On-machine measurement and compensation of thin-walled surface

稳健性(进化) 补偿(心理学) 机床 粒子群优化 采样(信号处理) 过程(计算) 控制工程 领域(数学) 计算机科学 自适应采样 机械工程 还原(数学) 控制理论(社会学) 算法 人工智能 工程类 几何学 数学 计算机视觉 控制(管理) 基因 精神分析 纯数学 统计 蒙特卡罗方法 生物化学 操作系统 化学 滤波器(信号处理) 心理学
作者
Lida Zhu,Yanpeng Hao,Shaoqing Qin,Xiaoyu Pei,Tianming Yan,Qiuyu Qin,Hao Lü,Boling Yan,Xin Shu,Jianhua Yong
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:271: 109308-109308 被引量:7
标识
DOI:10.1016/j.ijmecsci.2024.109308
摘要

On-machine measurement technology is considered as a key technology for realizing closed-loop feedback control in intelligent manufacturing due to the reduction of the transfer process. However, the complexity of the machine tool process system introduces some uncertainty into the accuracy of on-machine measurement, which severely limits the application in the actual industrial field. To overcome the shortcomings of the existing uncertainty, an inspection framework for on-machine measurement of thin-walled surface is proposed. Firstly, a low-cost wireless on-machine measurement system based on potential signals is established and integrated into a manufacturing process line for automatic sampling. Then, the similarity of momentum conservation is introduced into sampling planning, and an adaptive sampling model based on momentum conservation and multi-objective particle swarm optimizer is proposed. Finally, a stacked deep learning model under the vertical inspection direction is proposed to improve the inspection accuracy by correcting the sampling data. Compared with existing sampling methods, the proposed model is similar to an attention mechanism that enables adaptive enhancement of profile features. The inspection performance by data correction is improved by about 16.14% in the mean inspection error. Simulations and experiments show that the proposed method has great advantages in terms of efficiency and robustness, which can provide a theoretical reference for adaptive toolpath correction for thin-walled surfaces.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助科研民工采纳,获得10
1秒前
灿烂千阳完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
NXK发布了新的文献求助10
2秒前
2秒前
2秒前
SciGPT应助no1isme采纳,获得10
2秒前
瓜瓜发布了新的文献求助10
2秒前
饱满的诗霜关注了科研通微信公众号
3秒前
cc应助wing采纳,获得20
3秒前
211发布了新的文献求助10
3秒前
修越完成签到,获得积分10
4秒前
CodeCraft应助Regina采纳,获得10
4秒前
情怀应助xixilamn采纳,获得10
4秒前
壮壮发布了新的文献求助10
5秒前
在水一方应助小新同学采纳,获得10
5秒前
6秒前
6秒前
Owen应助sule采纳,获得10
6秒前
6秒前
修越发布了新的文献求助10
6秒前
大模型应助荻野千寻采纳,获得10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
xiaowang发布了新的文献求助10
7秒前
8秒前
lintao0836完成签到,获得积分20
8秒前
8秒前
9秒前
xxx发布了新的文献求助10
9秒前
10秒前
粗心的忆山完成签到,获得积分10
10秒前
英俊的铭应助wise111采纳,获得10
11秒前
瑁mao完成签到 ,获得积分10
11秒前
Orange应助cc采纳,获得10
12秒前
阔达丹亦发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727863
求助须知:如何正确求助?哪些是违规求助? 5310392
关于积分的说明 15312447
捐赠科研通 4875237
什么是DOI,文献DOI怎么找? 2618649
邀请新用户注册赠送积分活动 1568278
关于科研通互助平台的介绍 1524932