ATP合酶
化学
ATP酶
分子马达
电化学梯度
ATP水解
纳米技术
生物物理学
生物化学
膜
材料科学
酶
生物
作者
Yue Li,Jun Liu,Yingjie Wu,Qiang He
摘要
We report the hierarchical assembly of a chloroplast-derived rotary FoF1-ATPase motor-propelled flasklike pentosan colloidal motor (FPCM) with the ability of the synthesis, storage, and triggered release of biological energy currency ATP. These streamlined and submicrometer-sized hollow flasklike pentosan colloidal motors are prepared by combining a soft-template-based hydrothermal polymerization with a vacuum infusion of chloroplast-derived proteoliposomes containing rotary FoF1-ATPase motors. The generation of proton motive force across the proteoliposomes by injecting an acidic buffer solution promotes the rotation of FoF1-ATPase motors to drive the self-propelled motion of FPCMs, accompanying the inner ATP synthesis and storage. These rotary FoF1-ATPase motor-powered FPCMs exhibit a chemotactic behavior by migrating from their neck opening to their round bottom along a proton gradient of the external environment (negative chemotaxis). Such rotary biomolecular motor-driven flasklike pentosan colloidal motors with ATP synthesis and on-demand release make them promising candidates for engineering novel intelligent nanocarriers to actively regulate cellular metabolism.
科研通智能强力驱动
Strongly Powered by AbleSci AI