多酚
萃取(化学)
化学
食品科学
产量(工程)
微波食品加热
基质(化学分析)
抗氧化剂
色谱法
材料科学
计算机科学
有机化学
复合材料
电信
作者
Marta Ferrati,Eleonora Spinozzi,Eugenia Mazzara,Maria Carmela Ianni,Doaa Abouelenein,Riccardo Petrelli,Giovanni Caprioli,Massimo Ricciutelli,Stefania Garzoli,Pilar Cebollada,Francisco Les,Víctor López,Filippo Maggi,Marco Cespi
标识
DOI:10.1016/j.foodchem.2024.139101
摘要
Green technologies based on microwaves have been developed by the food industry to produce organoleptically acceptable fruit juices without preliminary processing. Microwave irradiation coupled with hydrodiffusion and gravity (MHG) combines microwave heating with the earth's gravity, allowing the collection of hydrophilic substances released from the irradiated matrix. To the best of our knowledge, MHG extraction has never been experimented to produce pomegranate juice. In this work, we have evaluated it as a potential alternative to the conventional squeezing. A central composite design study (CCD) allowed the selection of the best extractive conditions (irradiation power and extraction time) to obtain a pomegranate juice with higher yield, polyphenol (e.g., catechin and delphinidin-3,5-glucoside) content, and related bioactivities (antioxidant and antidiabetic) than the one obtained by squeezing while maintaining the chemical-physical properties. Thus, this technique appears to be a functional alternative to producing high value pomegranate juice.
科研通智能强力驱动
Strongly Powered by AbleSci AI