作者
Bangjun Guo,Mengchun Jiang,Xiang Guo,Chunxiang Tang,Jian Zhong,Mengjie Lu,Chunyu Liu,Xiao-Lei Zhang,Hongyan Qiao,Fan Zhou,Peng-Peng Xu,Yi Xue,Minwen Zheng,Yang Hou,Sheng Wang,Jiayin Zhang,Bo Zhang,Dai‐Min Zhang,Lei Xu,Xiuhua Hu,Changsheng Zhou,Jianhua Li,Zhiwen Yang,Xinsheng Mao,Guangming Lu,Long Jiang Zhang
摘要
Currently, clinically available coronary CT angiography (CCTA) derived fractional flow reserve (CT-FFR) is time-consuming and complex. We propose a novel artificial intelligence-based fully-automated, on-site CT-FFR technology, which combines the automated coronary plaque segmentation and luminal extraction model with reduced order 3 dimentional (3D) computational fluid dynamics. A total of 463 consecutive patients with 600 vessels from the updated China CT-FFR study in Cohort 1 undergoing both CCTA and invasive fractional flow reserve (FFR) within 90 days were collected for diagnostic performance evaluation. For Cohort 2, a total of 901 chronic coronary syndromes patients with index CT-FFR and clinical outcomes at 3-year follow-up were retrospectively analyzed. In Cohort 3, the association between index CT-FFR from triple-rule-out CTA and major adverse cardiac events in patients with acute chest pain from the emergency department was further evaluated. The diagnostic accuracy of this CT-FFR in Cohort 1 was 0.82 with an area under the curve of 0.82 on a per-patient level. Compared with the manually dependent CT-FFR techniques, the operation time of this technique was substantially shortened by 3 times and the number of clicks from about 60 to 1. This CT-FFR technique has a highly successful (> 99%) calculation rate and also provides superior prediction value for major adverse cardiac events than CCTA alone both in patients with chronic coronary syndromes and acute chest pain. Thus, the novel artificial intelligence-based fully automated, on-site CT-FFR technique can function as an objective and convenient tool for coronary stenosis functional evaluation in the real-world clinical setting.