模板
计算机科学
人工神经网络
门牙
人工智能
前牙
口腔正畸科
模式识别(心理学)
医学
程序设计语言
作者
Du Chen,Mei-Qi Yu,Q. Li,Xiang He,Fei Liu,Jiefei Shen
标识
DOI:10.1016/j.jdent.2024.104971
摘要
In many prosthodontic procedures, traditional computer-aided design (CAD) is often time-consuming and lacks accuracy in shape restoration. In this study, we innovatively combined implicit template and deep learning (DL) to construct a precise neural network for personalized tooth defect restoration. Ninety models of right maxillary central incisor (80 for training, 10 for validation) were collected. A DL model named ToothDIT was trained to establish an implicit template and a neural network capable of predicting unique identifications. In the validation stage, teeth in validation set were processed into corner, incisive, and medium defects. The defective teeth were inputted into ToothDIT to predict the unique identification, which actuated the deformation of the implicit template to generate the highly customized template (DIT) for the target tooth. Morphological restorations were executed with templates from template shape library (TSL), average tooth template (ATT), and DIT in Exocad (GmbH, Germany). RMSestimate, width, length, aspect ratio, incisal edge curvature, incisive end retraction, and guiding inclination were introduced to assess the restorative accuracy. Statistical analysis was conducted using two-way ANOVA and paired t-test for overall and detailed differences. DIT displayed significantly smaller RMSestimate than TSL and ATT. In 2D detailed analysis, DIT exhibited significantly less deviations from the natural teeth compared to TSL and ATT. The proposed DL model successfully reconstructed the morphology of anterior teeth with various degrees of defects and achieved satisfactory accuracy. This approach provides a more reliable reference for prostheses design, resulting in enhanced accuracy in morphological restoration. This DL model holds promise in assisting dentists and technicians in obtaining morphology templates that closely resemble the original shape of the defective teeth. These customized templates serve as a foundation for enhancing the efficiency and precision of digital restorative design for defective teeth.
科研通智能强力驱动
Strongly Powered by AbleSci AI