Precise tooth design using deep learning-based tooth templates

模板 计算机科学 人工神经网络 门牙 人工智能 前牙 口腔正畸科 模式识别(心理学) 医学 程序设计语言
作者
Du Chen,Mei-Qi Yu,Q. Li,Xiang He,Fei Liu,Jiefei Shen
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:144: 104971-104971 被引量:1
标识
DOI:10.1016/j.jdent.2024.104971
摘要

In many prosthodontic procedures, traditional computer-aided design (CAD) is often time-consuming and lacks accuracy in shape restoration. In this study, we innovatively combined implicit template and deep learning (DL) to construct a precise neural network for personalized tooth defect restoration. Ninety models of right maxillary central incisor (80 for training, 10 for validation) were collected. A DL model named ToothDIT was trained to establish an implicit template and a neural network capable of predicting unique identifications. In the validation stage, teeth in validation set were processed into corner, incisive, and medium defects. The defective teeth were inputted into ToothDIT to predict the unique identification, which actuated the deformation of the implicit template to generate the highly customized template (DIT) for the target tooth. Morphological restorations were executed with templates from template shape library (TSL), average tooth template (ATT), and DIT in Exocad (GmbH, Germany). RMSestimate, width, length, aspect ratio, incisal edge curvature, incisive end retraction, and guiding inclination were introduced to assess the restorative accuracy. Statistical analysis was conducted using two-way ANOVA and paired t-test for overall and detailed differences. DIT displayed significantly smaller RMSestimate than TSL and ATT. In 2D detailed analysis, DIT exhibited significantly less deviations from the natural teeth compared to TSL and ATT. The proposed DL model successfully reconstructed the morphology of anterior teeth with various degrees of defects and achieved satisfactory accuracy. This approach provides a more reliable reference for prostheses design, resulting in enhanced accuracy in morphological restoration. This DL model holds promise in assisting dentists and technicians in obtaining morphology templates that closely resemble the original shape of the defective teeth. These customized templates serve as a foundation for enhancing the efficiency and precision of digital restorative design for defective teeth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助科研通管家采纳,获得10
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
薰硝壤应助科研通管家采纳,获得10
1秒前
薰硝壤应助科研通管家采纳,获得10
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
路过的骑士完成签到 ,获得积分10
4秒前
马大翔完成签到,获得积分10
12秒前
17秒前
cc2713206完成签到,获得积分0
33秒前
36秒前
赵田完成签到 ,获得积分10
49秒前
小谭完成签到 ,获得积分10
50秒前
负责冰海完成签到 ,获得积分10
54秒前
葡萄炖雪梨完成签到 ,获得积分10
57秒前
sqq完成签到 ,获得积分10
1分钟前
甘sir完成签到 ,获得积分10
1分钟前
俭朴的大有发布了新的文献求助200
1分钟前
奋斗的妙海完成签到 ,获得积分0
1分钟前
1分钟前
我是老大应助腾腾同学采纳,获得10
1分钟前
foyefeng完成签到,获得积分10
1分钟前
1分钟前
CLTTTt完成签到,获得积分10
1分钟前
yunchaozhang发布了新的文献求助10
1分钟前
zwj003完成签到,获得积分10
1分钟前
我就想看看文献完成签到 ,获得积分10
1分钟前
fanmo完成签到 ,获得积分0
1分钟前
orixero应助geold采纳,获得10
1分钟前
来了来了完成签到 ,获得积分10
1分钟前
qiaobaqiao完成签到 ,获得积分10
1分钟前
令狐新竹完成签到 ,获得积分10
1分钟前
2分钟前
猪猪hero应助科研通管家采纳,获得10
2分钟前
猪猪hero应助科研通管家采纳,获得10
2分钟前
猪猪hero应助科研通管家采纳,获得10
2分钟前
2分钟前
猪猪hero应助科研通管家采纳,获得10
2分钟前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
How to mix methods: A guide to sequential, convergent, and experimental research designs 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3111635
求助须知:如何正确求助?哪些是违规求助? 2761773
关于积分的说明 7667236
捐赠科研通 2416791
什么是DOI,文献DOI怎么找? 1282920
科研通“疑难数据库(出版商)”最低求助积分说明 619187
版权声明 599499