FedDAT: An Approach for Foundation Model Finetuning in Multi-Modal Heterogeneous Federated Learning

基础(证据) 计算机科学 情态动词 人工智能 分布式计算 计算机体系结构 材料科学 复合材料 政治学 法学
作者
Haokun Chen,Yao Zhang,Denis Krompaß,Jindong Gu,Volker Tresp
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (10): 11285-11293 被引量:3
标识
DOI:10.1609/aaai.v38i10.29007
摘要

Recently, foundation models have exhibited remarkable advancements in multi-modal learning. These models, equipped with millions (or billions) of parameters, typically require a substantial amount of data for finetuning. However, collecting and centralizing training data from diverse sectors becomes challenging due to distinct privacy regulations. Federated Learning (FL) emerges as a promising solution, enabling multiple clients to collaboratively train neural networks without centralizing their local data. To alleviate client computation burdens and communication overheads, previous works have adapted Parameter-efficient Finetuning (PEFT) methods for FL. Hereby, only a small fraction of the model parameters are optimized and communicated during federated communications. Nevertheless, most previous works have focused on a single modality and neglected one common phenomenon, i.e., the presence of data heterogeneity across the clients. Therefore, in this work, we propose a finetuning framework tailored to heterogeneous multi-modal FL, called Federated Dual-Aadapter Teacher (FedDAT). Specifically, our approach leverages a Dual-Adapter Teacher (DAT) to address data heterogeneity by regularizing the client local updates and applying Mutual Knowledge Distillation (MKD) for an efficient knowledge transfer. FedDAT is the first approach that enables an efficient distributed finetuning of foundation models for a variety of heterogeneous Vision-Language tasks. To demonstrate its effectiveness, we conduct extensive experiments on four multi-modality FL benchmarks with different types of data heterogeneity, where FedDAT substantially outperforms the existing centralized PEFT methods adapted for FL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
稀里糊涂完成签到,获得积分10
刚刚
1秒前
齐天大圣完成签到,获得积分10
1秒前
1秒前
王王的狗子完成签到 ,获得积分10
1秒前
所所应助ikun采纳,获得10
2秒前
魏为维完成签到,获得积分10
2秒前
邓佳鑫Alan应助杨文彬采纳,获得10
3秒前
iNk应助susu采纳,获得20
3秒前
高大的蜡烛应助西早采纳,获得10
6秒前
阿K米德发布了新的文献求助20
6秒前
6秒前
7秒前
7秒前
缥缈逍遥完成签到 ,获得积分10
7秒前
Hello应助欣慰若采纳,获得30
8秒前
仙人殊恍惚应助wkkky采纳,获得10
9秒前
XP416完成签到,获得积分10
9秒前
逝水无痕完成签到,获得积分10
9秒前
未晚完成签到,获得积分10
10秒前
毛彬完成签到,获得积分10
10秒前
10秒前
专注凝蝶完成签到,获得积分20
11秒前
11秒前
huangyao完成签到 ,获得积分10
11秒前
11秒前
12秒前
Ava应助炙热的诗桃采纳,获得10
12秒前
鲤鱼灵波发布了新的文献求助10
12秒前
科研小白发布了新的文献求助10
12秒前
沐沐1003完成签到,获得积分10
13秒前
彼方完成签到 ,获得积分10
13秒前
想自由完成签到,获得积分10
14秒前
14秒前
14秒前
阿军发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助30
15秒前
16秒前
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016278
求助须知:如何正确求助?哪些是违规求助? 3556388
关于积分的说明 11320934
捐赠科研通 3289218
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887940
科研通“疑难数据库(出版商)”最低求助积分说明 812060