FedDAT: An Approach for Foundation Model Finetuning in Multi-Modal Heterogeneous Federated Learning

基础(证据) 计算机科学 情态动词 人工智能 分布式计算 计算机体系结构 材料科学 复合材料 政治学 法学
作者
Haokun Chen,Yao Zhang,Denis Krompaß,Jindong Gu,Volker Tresp
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (10): 11285-11293 被引量:3
标识
DOI:10.1609/aaai.v38i10.29007
摘要

Recently, foundation models have exhibited remarkable advancements in multi-modal learning. These models, equipped with millions (or billions) of parameters, typically require a substantial amount of data for finetuning. However, collecting and centralizing training data from diverse sectors becomes challenging due to distinct privacy regulations. Federated Learning (FL) emerges as a promising solution, enabling multiple clients to collaboratively train neural networks without centralizing their local data. To alleviate client computation burdens and communication overheads, previous works have adapted Parameter-efficient Finetuning (PEFT) methods for FL. Hereby, only a small fraction of the model parameters are optimized and communicated during federated communications. Nevertheless, most previous works have focused on a single modality and neglected one common phenomenon, i.e., the presence of data heterogeneity across the clients. Therefore, in this work, we propose a finetuning framework tailored to heterogeneous multi-modal FL, called Federated Dual-Aadapter Teacher (FedDAT). Specifically, our approach leverages a Dual-Adapter Teacher (DAT) to address data heterogeneity by regularizing the client local updates and applying Mutual Knowledge Distillation (MKD) for an efficient knowledge transfer. FedDAT is the first approach that enables an efficient distributed finetuning of foundation models for a variety of heterogeneous Vision-Language tasks. To demonstrate its effectiveness, we conduct extensive experiments on four multi-modality FL benchmarks with different types of data heterogeneity, where FedDAT substantially outperforms the existing centralized PEFT methods adapted for FL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助lmh采纳,获得10
1秒前
1秒前
橙子完成签到,获得积分10
2秒前
宁天问发布了新的文献求助10
2秒前
mnc发布了新的文献求助10
2秒前
研友_VZG7GZ应助汪辉采纳,获得10
2秒前
优美的忻完成签到,获得积分20
2秒前
泓泽发布了新的文献求助10
3秒前
Dopamine发布了新的文献求助10
3秒前
小铭完成签到,获得积分10
4秒前
4秒前
5秒前
大个应助粥粥采纳,获得10
5秒前
哈哈哈发布了新的文献求助10
5秒前
干净绮烟完成签到,获得积分10
6秒前
瘦瘦安蕾完成签到 ,获得积分10
6秒前
华仔应助Nor采纳,获得10
8秒前
Akim应助孙伟健采纳,获得10
8秒前
llt发布了新的文献求助10
8秒前
ddx完成签到,获得积分10
9秒前
追尾的猫完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
滕滕发布了新的文献求助10
11秒前
11秒前
会科研的胡萝卜完成签到,获得积分10
11秒前
11秒前
13秒前
顾矜应助粥粥采纳,获得10
13秒前
小鱼完成签到 ,获得积分10
14秒前
小伊001完成签到,获得积分10
14秒前
chengzhiheng完成签到,获得积分10
14秒前
15秒前
弗洛莉娅完成签到,获得积分10
16秒前
完美世界应助宁天问采纳,获得10
16秒前
Jasper应助lasak采纳,获得10
16秒前
chengzhiheng发布了新的文献求助10
16秒前
呵呵完成签到 ,获得积分10
17秒前
哈哈哈完成签到,获得积分10
17秒前
独特南霜发布了新的文献求助10
18秒前
虚荣的泥猴桃完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424595
求助须知:如何正确求助?哪些是违规求助? 4538935
关于积分的说明 14164426
捐赠科研通 4455911
什么是DOI,文献DOI怎么找? 2443990
邀请新用户注册赠送积分活动 1435069
关于科研通互助平台的介绍 1412452