Learning Association Characteristics by Dynamic Hypergraph and Gated Convolution Enhanced Pairwise Attributes for Prediction of Disease-Related lncRNAs

成对比较 编码 卷积(计算机科学) 超图 图形 节点(物理) 计算机科学 疾病 人工智能 生物网络 构造(python库) 计算生物学 理论计算机科学 生物 数学 遗传学 医学 人工神经网络 基因 离散数学 工程类 病理 结构工程 程序设计语言
作者
Ping Xuan,Siyuan Lu,Hui Cui,Shuai Wang,Toshiya Nakaguchi,Tiangang Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (8): 3569-3578 被引量:5
标识
DOI:10.1021/acs.jcim.4c00245
摘要

As the long non-coding RNAs (lncRNAs) play important roles during the incurrence and development of various human diseases, identifying disease-related lncRNAs can contribute to clarifying the pathogenesis of diseases. Most of the recent lncRNA-disease association prediction methods utilized the multi-source data about the lncRNAs and diseases. A single lncRNA may participate in multiple disease processes, and multiple lncRNAs usually are involved in the same disease process synergistically. However, the previous methods did not completely exploit the biological characteristics to construct the informative prediction models. We construct a prediction model based on adaptive hypergraph and gated convolution for lncRNA-disease association prediction (AGLDA), to embed and encode the biological characteristics about lncRNA–disease associations, the topological features from the entire heterogeneous graph perspective, and the gated enhanced pairwise features. First, the strategy for constructing hyperedges is designed to reflect the biological characteristic that multiple lncRNAs are involved in multiple disease processes. Furthermore, each hyperedge has its own biological perspective, and multiple hyperedges are beneficial for revealing the diverse relationships among multiple lncRNAs and diseases. Second, we encode the biological features of each lncRNA (disease) node using a strategy based on dynamic hypergraph convolutional networks. The strategy may adaptively learn the features of the hyperedges and formulate the dynamically evolved hypergraph topological structure. Third, a group convolutional network is established to integrate the entire heterogeneous topological structure and multiple types of node attributes within an lncRNA–disease–miRNA graph. Finally, a gated convolutional strategy is proposed to enhance the informative features of the lncRNA–disease node pairs. The comparison experiments indicate that AGLDA outperforms seven advanced prediction methods. The ablation studies confirm the effectiveness of major innovations, and the case studies validate AGLDA's ability in application for discovering potential disease-related lncRNA candidates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可靠的芒果完成签到,获得积分10
刚刚
柔弱雅彤发布了新的文献求助10
刚刚
可爱的函函应助初一采纳,获得10
1秒前
1秒前
2秒前
个性的紫菜应助JIAN采纳,获得10
2秒前
旭东静静发布了新的文献求助10
3秒前
4秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
pp发布了新的文献求助10
7秒前
7秒前
未转头时皆梦完成签到,获得积分10
7秒前
脑洞疼应助hankpotter采纳,获得10
8秒前
SciGPT应助xiaoyuzi采纳,获得20
8秒前
芮rich完成签到,获得积分10
8秒前
a379896033完成签到 ,获得积分10
9秒前
望TIAN完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
syleaf完成签到 ,获得积分10
11秒前
今后应助圆锥香蕉采纳,获得20
11秒前
微笑孤云完成签到 ,获得积分10
11秒前
完美的沉鱼完成签到 ,获得积分10
12秒前
xutingfeng发布了新的文献求助10
12秒前
12秒前
13秒前
英俊的铭应助hrr采纳,获得10
13秒前
13秒前
望TIAN发布了新的文献求助10
14秒前
彭于晏应助pp采纳,获得10
14秒前
小二郎应助葡萄树采纳,获得10
14秒前
Owen应助summing采纳,获得10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106