Learning Association Characteristics by Dynamic Hypergraph and Gated Convolution Enhanced Pairwise Attributes for Prediction of Disease-Related lncRNAs

成对比较 编码 卷积(计算机科学) 超图 图形 节点(物理) 计算机科学 疾病 人工智能 生物网络 构造(python库) 计算生物学 理论计算机科学 生物 数学 遗传学 医学 人工神经网络 基因 结构工程 离散数学 病理 工程类 程序设计语言
作者
Ping Xuan,Siyuan Lu,Hui Cui,Shuai Wang,Toshiya Nakaguchi,Tiangang Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (8): 3569-3578 被引量:5
标识
DOI:10.1021/acs.jcim.4c00245
摘要

As the long non-coding RNAs (lncRNAs) play important roles during the incurrence and development of various human diseases, identifying disease-related lncRNAs can contribute to clarifying the pathogenesis of diseases. Most of the recent lncRNA-disease association prediction methods utilized the multi-source data about the lncRNAs and diseases. A single lncRNA may participate in multiple disease processes, and multiple lncRNAs usually are involved in the same disease process synergistically. However, the previous methods did not completely exploit the biological characteristics to construct the informative prediction models. We construct a prediction model based on adaptive hypergraph and gated convolution for lncRNA-disease association prediction (AGLDA), to embed and encode the biological characteristics about lncRNA–disease associations, the topological features from the entire heterogeneous graph perspective, and the gated enhanced pairwise features. First, the strategy for constructing hyperedges is designed to reflect the biological characteristic that multiple lncRNAs are involved in multiple disease processes. Furthermore, each hyperedge has its own biological perspective, and multiple hyperedges are beneficial for revealing the diverse relationships among multiple lncRNAs and diseases. Second, we encode the biological features of each lncRNA (disease) node using a strategy based on dynamic hypergraph convolutional networks. The strategy may adaptively learn the features of the hyperedges and formulate the dynamically evolved hypergraph topological structure. Third, a group convolutional network is established to integrate the entire heterogeneous topological structure and multiple types of node attributes within an lncRNA–disease–miRNA graph. Finally, a gated convolutional strategy is proposed to enhance the informative features of the lncRNA–disease node pairs. The comparison experiments indicate that AGLDA outperforms seven advanced prediction methods. The ablation studies confirm the effectiveness of major innovations, and the case studies validate AGLDA's ability in application for discovering potential disease-related lncRNA candidates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶子完成签到,获得积分10
刚刚
千跃完成签到,获得积分10
刚刚
SYLH应助踏实的幻香采纳,获得10
1秒前
Butterfly发布了新的文献求助10
1秒前
万能图书馆应助卜懂得采纳,获得10
1秒前
zzz完成签到,获得积分10
2秒前
Simple发布了新的文献求助10
2秒前
流体离子发电机完成签到,获得积分10
2秒前
LXL完成签到 ,获得积分10
2秒前
SHAO应助煤灰采纳,获得10
2秒前
lyn发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
Satria完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
慕青应助陶军辉采纳,获得10
6秒前
7秒前
可爱的函函应助joinn采纳,获得10
7秒前
7秒前
8秒前
8秒前
11222浅发布了新的文献求助10
9秒前
yuzi发布了新的文献求助10
9秒前
9秒前
10秒前
且放青山远完成签到,获得积分10
10秒前
10秒前
王宇航发布了新的文献求助10
10秒前
zuoyou完成签到,获得积分20
11秒前
11秒前
11秒前
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978493
求助须知:如何正确求助?哪些是违规求助? 3522581
关于积分的说明 11213889
捐赠科研通 3260014
什么是DOI,文献DOI怎么找? 1799712
邀请新用户注册赠送积分活动 878604
科研通“疑难数据库(出版商)”最低求助积分说明 807002