Learning Association Characteristics by Dynamic Hypergraph and Gated Convolution Enhanced Pairwise Attributes for Prediction of Disease-Related lncRNAs

成对比较 编码 卷积(计算机科学) 超图 图形 节点(物理) 计算机科学 疾病 人工智能 生物网络 构造(python库) 计算生物学 理论计算机科学 生物 数学 遗传学 医学 人工神经网络 基因 离散数学 工程类 病理 结构工程 程序设计语言
作者
Ping Xuan,Siyuan Lu,Hui Cui,Shuai Wang,Toshiya Nakaguchi,Tiangang Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (8): 3569-3578 被引量:5
标识
DOI:10.1021/acs.jcim.4c00245
摘要

As the long non-coding RNAs (lncRNAs) play important roles during the incurrence and development of various human diseases, identifying disease-related lncRNAs can contribute to clarifying the pathogenesis of diseases. Most of the recent lncRNA-disease association prediction methods utilized the multi-source data about the lncRNAs and diseases. A single lncRNA may participate in multiple disease processes, and multiple lncRNAs usually are involved in the same disease process synergistically. However, the previous methods did not completely exploit the biological characteristics to construct the informative prediction models. We construct a prediction model based on adaptive hypergraph and gated convolution for lncRNA-disease association prediction (AGLDA), to embed and encode the biological characteristics about lncRNA–disease associations, the topological features from the entire heterogeneous graph perspective, and the gated enhanced pairwise features. First, the strategy for constructing hyperedges is designed to reflect the biological characteristic that multiple lncRNAs are involved in multiple disease processes. Furthermore, each hyperedge has its own biological perspective, and multiple hyperedges are beneficial for revealing the diverse relationships among multiple lncRNAs and diseases. Second, we encode the biological features of each lncRNA (disease) node using a strategy based on dynamic hypergraph convolutional networks. The strategy may adaptively learn the features of the hyperedges and formulate the dynamically evolved hypergraph topological structure. Third, a group convolutional network is established to integrate the entire heterogeneous topological structure and multiple types of node attributes within an lncRNA–disease–miRNA graph. Finally, a gated convolutional strategy is proposed to enhance the informative features of the lncRNA–disease node pairs. The comparison experiments indicate that AGLDA outperforms seven advanced prediction methods. The ablation studies confirm the effectiveness of major innovations, and the case studies validate AGLDA's ability in application for discovering potential disease-related lncRNA candidates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xx完成签到,获得积分10
刚刚
Jackie发布了新的文献求助10
1秒前
支支发布了新的文献求助10
1秒前
马先生发布了新的文献求助10
2秒前
奶黄包完成签到,获得积分10
2秒前
XHY完成签到,获得积分10
2秒前
科研通AI6应助聪明大米采纳,获得10
2秒前
包容的仙人掌关注了科研通微信公众号
3秒前
丽丽完成签到 ,获得积分10
3秒前
3秒前
lalala完成签到,获得积分10
4秒前
EMC完成签到 ,获得积分10
4秒前
充电宝应助wergou采纳,获得10
4秒前
4秒前
翠翠发布了新的文献求助10
5秒前
13841881385完成签到,获得积分10
5秒前
wanglejia完成签到,获得积分10
5秒前
5秒前
小张呢好发布了新的文献求助10
6秒前
慕青应助123123采纳,获得10
6秒前
山东人在南京完成签到 ,获得积分10
6秒前
Young完成签到,获得积分10
6秒前
欢呼傀斗发布了新的文献求助10
6秒前
学啥不好非要学生物完成签到,获得积分10
6秒前
6秒前
CC发布了新的文献求助20
6秒前
田様应助xij采纳,获得10
7秒前
jt完成签到,获得积分10
7秒前
mary发布了新的文献求助10
7秒前
星月夜完成签到,获得积分10
8秒前
8秒前
洋葱完成签到,获得积分10
8秒前
liuyq0501完成签到,获得积分0
8秒前
pzx完成签到,获得积分10
9秒前
9秒前
Owen应助hd采纳,获得10
9秒前
AbOO完成签到,获得积分10
10秒前
拓跋涵易完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4599250
求助须知:如何正确求助?哪些是违规求助? 4009968
关于积分的说明 12414035
捐赠科研通 3689591
什么是DOI,文献DOI怎么找? 2033925
邀请新用户注册赠送积分活动 1067094
科研通“疑难数据库(出版商)”最低求助积分说明 952171