Learning Association Characteristics by Dynamic Hypergraph and Gated Convolution Enhanced Pairwise Attributes for Prediction of Disease-Related lncRNAs

成对比较 编码 卷积(计算机科学) 超图 图形 节点(物理) 计算机科学 疾病 人工智能 生物网络 构造(python库) 计算生物学 理论计算机科学 生物 数学 遗传学 医学 人工神经网络 基因 离散数学 工程类 病理 结构工程 程序设计语言
作者
Ping Xuan,Siyuan Lu,Hui Cui,Shuai Wang,Toshiya Nakaguchi,Tiangang Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (8): 3569-3578 被引量:1
标识
DOI:10.1021/acs.jcim.4c00245
摘要

As the long non-coding RNAs (lncRNAs) play important roles during the incurrence and development of various human diseases, identifying disease-related lncRNAs can contribute to clarifying the pathogenesis of diseases. Most of the recent lncRNA-disease association prediction methods utilized the multi-source data about the lncRNAs and diseases. A single lncRNA may participate in multiple disease processes, and multiple lncRNAs usually are involved in the same disease process synergistically. However, the previous methods did not completely exploit the biological characteristics to construct the informative prediction models. We construct a prediction model based on adaptive hypergraph and gated convolution for lncRNA-disease association prediction (AGLDA), to embed and encode the biological characteristics about lncRNA–disease associations, the topological features from the entire heterogeneous graph perspective, and the gated enhanced pairwise features. First, the strategy for constructing hyperedges is designed to reflect the biological characteristic that multiple lncRNAs are involved in multiple disease processes. Furthermore, each hyperedge has its own biological perspective, and multiple hyperedges are beneficial for revealing the diverse relationships among multiple lncRNAs and diseases. Second, we encode the biological features of each lncRNA (disease) node using a strategy based on dynamic hypergraph convolutional networks. The strategy may adaptively learn the features of the hyperedges and formulate the dynamically evolved hypergraph topological structure. Third, a group convolutional network is established to integrate the entire heterogeneous topological structure and multiple types of node attributes within an lncRNA–disease–miRNA graph. Finally, a gated convolutional strategy is proposed to enhance the informative features of the lncRNA–disease node pairs. The comparison experiments indicate that AGLDA outperforms seven advanced prediction methods. The ablation studies confirm the effectiveness of major innovations, and the case studies validate AGLDA's ability in application for discovering potential disease-related lncRNA candidates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助自觉的无声采纳,获得10
刚刚
XJH完成签到,获得积分10
刚刚
2秒前
guard发布了新的文献求助10
2秒前
hgzb发布了新的文献求助10
2秒前
2秒前
Lucas应助wyf1996采纳,获得10
3秒前
3秒前
独特的沛凝完成签到,获得积分10
4秒前
4秒前
旭旭完成签到 ,获得积分10
5秒前
5秒前
7秒前
虫哥哥!完成签到,获得积分20
7秒前
材小白完成签到,获得积分10
7秒前
Lilith发布了新的文献求助10
7秒前
9秒前
KDC发布了新的文献求助10
9秒前
粥仙僧发布了新的文献求助10
9秒前
10秒前
11秒前
可爱航发布了新的文献求助10
11秒前
脑洞疼应助等待冬亦采纳,获得10
11秒前
搜集达人应助李心雨采纳,获得10
12秒前
13秒前
14秒前
cmd发布了新的文献求助10
14秒前
15秒前
机智依丝应助Lilith采纳,获得10
15秒前
16秒前
16秒前
17秒前
阿紫发布了新的文献求助10
17秒前
wyf1996完成签到,获得积分10
17秒前
li完成签到,获得积分10
19秒前
20秒前
guduoduo发布了新的文献求助10
20秒前
nayuta发布了新的文献求助10
20秒前
20秒前
21秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412462
求助须知:如何正确求助?哪些是违规求助? 3015168
关于积分的说明 8868829
捐赠科研通 2702831
什么是DOI,文献DOI怎么找? 1481897
科研通“疑难数据库(出版商)”最低求助积分说明 685084
邀请新用户注册赠送积分活动 679733