Microstructure evolution mechanism of tungsten induced by ultrasonic elliptical vibration cutting at atomic/nano scale

微观结构 位错 材料科学 变形机理 冶金 打滑(空气动力学) 脆性 复合材料 物理 热力学
作者
Hao Wang,Renke Kang,Yan Bao,Kaixuan Wang,Xiaoguang Guo,Zhigang Dong
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:253: 108397-108397 被引量:22
标识
DOI:10.1016/j.ijmecsci.2023.108397
摘要

Ultrasonic elliptical vibration cutting (UEVC) technology has been utilized for ultra-precision machining of difficult-to-machine metal materials such as tungsten. Nevertheless, the microstructure evolution mechanism of tungsten under the synergistic effect of ultrasonic and mechanical loads remains unclear, particularly at the atomic/nano scale. Additionally, the plastic deformation mechanism of tungsten differs from that of other metallic materials due to its low dislocation mobility (brittle at room temperature). Hence, the molecular dynamics simulation of UEVC for single crystal tungsten was established to study its mechanisms in plastic deformation and microstructure evolution under stress induction in this study. The results indicated that the main plastic deformation mechanisms including dislocation slip, amorphous phase transformation and nanocrystal were found during the tungsten removal, and accompanied by some extent of lattice distortion. The instantaneous shear stress of UEVC reached 16.88 GPa. Compared with common cutting (CC), the formation of nanocrystals mainly occurred in UEVC because the instantaneous shear stress exceeded the critical shear stress of multiple slip systems during cutting. Similarly, the high dislocation density and high plastic deformation degree of the machined zone in UEVC were also attributed to the high shear stress. The dynamic recrystallization of tungsten induced by UEVC was realized from dislocation slip to the formation of dense dislocation walls, followed by the formation of sub-grain boundaries, and finally to the formation of nanocrystals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇发布了新的文献求助50
1秒前
坚强亦丝应助喜洋羊采纳,获得10
2秒前
虞头星星发布了新的文献求助10
2秒前
bxw发布了新的文献求助10
2秒前
天天快乐应助2393843435采纳,获得10
3秒前
852应助傲娇的诗兰采纳,获得10
3秒前
cherhon发布了新的文献求助10
3秒前
崔噔噔发布了新的文献求助10
4秒前
lei应助容若采纳,获得10
4秒前
泛泛之交发布了新的文献求助10
4秒前
怕孤独的飞飞完成签到,获得积分10
5秒前
盖斯的可言完成签到,获得积分10
5秒前
6秒前
Whim完成签到,获得积分10
8秒前
8秒前
科研通AI5应助云中子采纳,获得10
9秒前
9秒前
9秒前
9秒前
danti完成签到,获得积分10
10秒前
10秒前
10秒前
安静复天完成签到,获得积分10
10秒前
筱星完成签到,获得积分10
10秒前
11秒前
天天快乐应助一念初见采纳,获得10
11秒前
11秒前
飘逸千万关注了科研通微信公众号
12秒前
神说应助枫绣采纳,获得20
12秒前
wjx发布了新的文献求助30
12秒前
情怀应助星语花采纳,获得10
14秒前
007发布了新的文献求助10
14秒前
Mizoresuki应助留胡子的书桃采纳,获得10
14秒前
研友_VZG7GZ应助bxw采纳,获得10
14秒前
danti发布了新的文献求助10
14秒前
科研通AI5应助蓝色逍遥鱼采纳,获得10
14秒前
15秒前
Anderson732发布了新的文献求助10
15秒前
kai发布了新的文献求助10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564065
求助须知:如何正确求助?哪些是违规求助? 3137276
关于积分的说明 9421653
捐赠科研通 2837658
什么是DOI,文献DOI怎么找? 1559942
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717215