Microstructure evolution mechanism of tungsten induced by ultrasonic elliptical vibration cutting at atomic/nano scale

微观结构 位错 材料科学 变形机理 冶金 打滑(空气动力学) 脆性 复合材料 物理 热力学
作者
Hao Wang,Renke Kang,Yan Bao,Kaixuan Wang,Xiaoguang Guo,Zhigang Dong
出处
期刊:International Journal of Mechanical Sciences [Elsevier BV]
卷期号:253: 108397-108397 被引量:26
标识
DOI:10.1016/j.ijmecsci.2023.108397
摘要

Ultrasonic elliptical vibration cutting (UEVC) technology has been utilized for ultra-precision machining of difficult-to-machine metal materials such as tungsten. Nevertheless, the microstructure evolution mechanism of tungsten under the synergistic effect of ultrasonic and mechanical loads remains unclear, particularly at the atomic/nano scale. Additionally, the plastic deformation mechanism of tungsten differs from that of other metallic materials due to its low dislocation mobility (brittle at room temperature). Hence, the molecular dynamics simulation of UEVC for single crystal tungsten was established to study its mechanisms in plastic deformation and microstructure evolution under stress induction in this study. The results indicated that the main plastic deformation mechanisms including dislocation slip, amorphous phase transformation and nanocrystal were found during the tungsten removal, and accompanied by some extent of lattice distortion. The instantaneous shear stress of UEVC reached 16.88 GPa. Compared with common cutting (CC), the formation of nanocrystals mainly occurred in UEVC because the instantaneous shear stress exceeded the critical shear stress of multiple slip systems during cutting. Similarly, the high dislocation density and high plastic deformation degree of the machined zone in UEVC were also attributed to the high shear stress. The dynamic recrystallization of tungsten induced by UEVC was realized from dislocation slip to the formation of dense dislocation walls, followed by the formation of sub-grain boundaries, and finally to the formation of nanocrystals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
鞥枊发布了新的文献求助10
2秒前
3秒前
3秒前
gabee完成签到 ,获得积分10
3秒前
ymx发布了新的文献求助10
4秒前
5秒前
6秒前
清秀的代珊完成签到,获得积分20
6秒前
格林渥发布了新的文献求助10
7秒前
7秒前
yxy发布了新的文献求助10
8秒前
蓓蓓完成签到 ,获得积分20
8秒前
8秒前
9秒前
10秒前
鞥枊完成签到,获得积分10
10秒前
11秒前
哈哈婷完成签到,获得积分10
11秒前
11秒前
一米八发布了新的文献求助10
12秒前
12秒前
闪闪寄凡完成签到,获得积分20
13秒前
yudiao完成签到,获得积分20
14秒前
14秒前
15秒前
哈哈婷发布了新的文献求助10
15秒前
ZGZ123应助yxy采纳,获得10
15秒前
周杰伦发布了新的文献求助10
16秒前
猇会不会发布了新的文献求助10
16秒前
梓亮完成签到,获得积分10
17秒前
李晓航发布了新的文献求助10
18秒前
三四月完成签到 ,获得积分10
18秒前
隐形曼青应助南天采纳,获得30
19秒前
yudiao发布了新的文献求助10
19秒前
21秒前
顾矜应助深情的皮皮虾采纳,获得10
22秒前
今后应助特昂唐采纳,获得10
22秒前
12完成签到,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975658
求助须知:如何正确求助?哪些是违规求助? 3519986
关于积分的说明 11200481
捐赠科研通 3256410
什么是DOI,文献DOI怎么找? 1798247
邀请新用户注册赠送积分活动 877490
科研通“疑难数据库(出版商)”最低求助积分说明 806376