Unleashing the Power of Machine Learning: A Comparative Study of Classification Algorithms for Credit Risk Assessment

机器学习 计算机科学 人工智能 随机森林 信用风险 支持向量机 风险评估 人工神经网络 特征工程 接收机工作特性 决策树 算法 统计分类 财务 深度学习 业务 计算机安全
作者
Sandip Shinde,Satish D. Kale
出处
期刊:International Journal of Advanced Research in Science, Communication and Technology [Naksh Solutions]
卷期号:: 552-556 被引量:1
标识
DOI:10.48175/ijarsct-11139
摘要

Credit risk assessment is a critical task in the financial industry, enabling lenders to evaluate the likelihood of default and make informed lending decisions. This paper presents a comprehensive comparative study of classification algorithms for credit risk assessment using machine learning techniques. The paper commences by providing an overview of the importance of credit risk assessment and the challenges faced by traditional methods. It then delves into the exploration of various machine learning algorithms, including logistic regression, decision trees, random forests, support vector machines, and neural networks, highlighting their potential in credit risk assessment. The objective of this study is to compare the performance of different classification algorithms in credit risk assessment. To achieve this, a dataset comprising historical credit data, including borrower information, financial indicators, and repayment history, is collected. The dataset is preprocessed to handle missing values, outliers, and feature engineering is applied to extract relevant predictors. A comprehensive evaluation is conducted, considering performance metrics such as accuracy, precision, recall, and area under the receiver operating characteristic curve (AUC-ROC). The comparative study provides insights into the strengths and weaknesses of each algorithm and their suitability for credit risk assessment in different scenarios. The results of this study contribute to the existing literature on credit risk assessment and offer practical guidance for financial institutions in selecting appropriate machine learning algorithms. Furthermore, the paper discusses potential challenges and limitations associated with the application of machine learning in credit risk assessment and proposes future research directions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助江东东东采纳,获得150
1秒前
善良傲珊完成签到,获得积分10
2秒前
云中子发布了新的文献求助10
2秒前
外向芫发布了新的文献求助10
3秒前
4秒前
Wang_miao完成签到,获得积分10
5秒前
6秒前
7秒前
司空灵竹完成签到,获得积分10
8秒前
闪闪的又菱完成签到 ,获得积分10
8秒前
8秒前
10秒前
11秒前
Ryan发布了新的文献求助10
11秒前
qtr完成签到,获得积分10
11秒前
12秒前
Lixiaoqiang完成签到,获得积分20
12秒前
小马甲应助May采纳,获得10
13秒前
xiaoyu发布了新的文献求助10
13秒前
16秒前
16秒前
江东东东发布了新的文献求助150
17秒前
17秒前
从容的丹南完成签到 ,获得积分10
18秒前
NexusExplorer应助云中子采纳,获得10
18秒前
外向芫完成签到,获得积分10
18秒前
18秒前
alex完成签到,获得积分10
19秒前
19秒前
周周发布了新的文献求助10
20秒前
Lucas应助周裕川采纳,获得10
21秒前
Jasper应助挂科且补考采纳,获得10
21秒前
22秒前
科研通AI5应助江东东东采纳,获得30
23秒前
Jasper应助欣欣然采纳,获得10
24秒前
狂野妙菡完成签到,获得积分10
24秒前
sjc发布了新的文献求助10
24秒前
25秒前
传奇3应助吴1采纳,获得30
26秒前
852应助高天雨采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555252
求助须知:如何正确求助?哪些是违规求助? 3130871
关于积分的说明 9389097
捐赠科研通 2830384
什么是DOI,文献DOI怎么找? 1555991
邀请新用户注册赠送积分活动 726370
科研通“疑难数据库(出版商)”最低求助积分说明 715737