Melanoma Skin Cancer Classification based on CNN Deep Learning Algorithms

深度学习 计算机科学 人工智能 卷积神经网络 皮肤癌 黑色素瘤 分类器(UML) 人工神经网络 机器学习 模式识别(心理学) 癌症 医学 癌症研究 内科学
作者
Safa Riyadh Waheed,Esther Duflo,Mohd Shafry Mohd Rahim,Norhaida Mohd Suaib,Fallah H. Najjar,Myasar Mundher Adnan,A.A. Salim
出处
期刊:Malaysian Journal of Fundamental and Applied Sciences [Penerbit UTM Press]
卷期号:19 (3): 299-305 被引量:2
标识
DOI:10.11113/mjfas.v19n3.2900
摘要

Melanoma, the deadliest form of skin cancer, is on the rise. The goal of this study is to present a deep learning system implementation for the detection of melanoma lesions on a server equipped with a graphics processing unit (GPU). When applied by a dermatologist, the recommended method might aid in the early detection of this kind of skin cancer. Evidence shows that deep learning may be used in a variety of settings to successfully extract patterns from data such as signals and images. This research presents a convolution neural network–based strategy for identifying early-stage melanoma skin cancer. Images are input into a deep learning model known as a convolutional neural network (CNN) that has already been pre-trained. The CNN classifier, which is trained with large amounts of data, can discriminate between malignant and nonmalignant melanoma. The method's success in the lab bodes well for its potential to aid dermatologists in the early detection of melanoma. However, the experimental results show that the proposed technique excels beyond the state-of-the-art methods in terms of diagnostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ronnie完成签到,获得积分10
刚刚
刚刚
碧蓝丹烟完成签到 ,获得积分10
1秒前
1秒前
1秒前
爱听歌的从筠完成签到,获得积分20
2秒前
spenley完成签到,获得积分10
2秒前
小二郎应助niekyang采纳,获得10
2秒前
ding应助AlwaysKim采纳,获得10
4秒前
杨冰完成签到,获得积分10
4秒前
Metx完成签到 ,获得积分10
4秒前
善学以致用应助Hiker采纳,获得10
5秒前
Leo完成签到,获得积分20
5秒前
Mr朱发布了新的文献求助10
5秒前
5秒前
kunkun发布了新的文献求助10
6秒前
烟花应助bxg采纳,获得10
6秒前
丫丫发布了新的文献求助10
7秒前
一独白完成签到 ,获得积分10
8秒前
8秒前
10秒前
GOD伟完成签到,获得积分10
11秒前
识途完成签到 ,获得积分10
11秒前
充电宝应助典雅的蜡烛采纳,获得10
12秒前
12秒前
LTY完成签到,获得积分10
12秒前
小铭的男仆完成签到,获得积分20
12秒前
热心的冷松完成签到,获得积分10
13秒前
勤奋的花前茶完成签到,获得积分10
14秒前
大尾巴白完成签到,获得积分10
14秒前
14秒前
14秒前
qq发布了新的文献求助10
15秒前
16秒前
蝈蝈完成签到,获得积分10
17秒前
cmq完成签到 ,获得积分10
17秒前
李健应助¥#¥-11采纳,获得10
18秒前
骤雨时晴完成签到 ,获得积分10
18秒前
18秒前
高分求助中
Comparative Anatomy of the Vertebrates 9th 3000
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571929
求助须知:如何正确求助?哪些是违规求助? 3142327
关于积分的说明 9446826
捐赠科研通 2843700
什么是DOI,文献DOI怎么找? 1563001
邀请新用户注册赠送积分活动 731530
科研通“疑难数据库(出版商)”最低求助积分说明 718557