Assessing the Quality of Metagenomic Next-Generation Sequencing for Pathogen Detection in Lower Respiratory Infections

基因组 背景(考古学) 生物 医学 遗传学 基因 古生物学
作者
Zhenli Diao,Yuanfeng Zhang,Yuqing Chen,Yanxi Han,Chang Lu,Yu Ma,Lei Feng,Tao Huang,Rui Zhang,Jinming Li
出处
期刊:Clinical Chemistry [Oxford University Press]
卷期号:69 (9): 1038-1049 被引量:7
标识
DOI:10.1093/clinchem/hvad072
摘要

Abstract Background Laboratory-developed metagenomic next-generation sequencing (mNGS) assays are increasingly being used for the diagnosis of infectious disease. To ensure comparable results and advance the quality control for the mNGS assay, we initiated a large-scale multicenter quality assessment to scrutinize the ability of mNGS to detect pathogens in lower respiratory infections. Methods A reference panel containing artificial microbial communities and real clinical samples was used to assess the performance of 122 laboratories. We comprehensively evaluated the reliability, the source of false-positive and false-negative microbes, as well as the ability to interpret the results. Results A wide variety of weighted F1-scores was observed across 122 participants, with a range from 0.20 to 0.97. The majority of false positive microbes (68.56%, 399/582) were introduced from “wet lab.” The loss of microbial sequence during wet labs was the chief cause (76.18%, 275/361) of false-negative errors. When the human context is 2 × 105 copies/mL, most DNA and RNA viruses at titers above 104 copies/mL could be detected by >80% of the participants, while >90% of the laboratories could detect bacteria and fungi at titers lower than 103 copies/mL. A total of 10.66% (13/122) to 38.52% (47/122) of the participants could detect the target pathogens but failed to reach a correct etiological diagnosis. Conclusions This study clarified the sources of false-positive and false-negative results and evaluated the performance of interpreting the results. This study was valuable for clinical mNGS laboratories to improve method development, avoid erroneous results being reported, and implement regulatory quality controls in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123cxj完成签到,获得积分10
刚刚
CO2发布了新的文献求助10
刚刚
summer发布了新的文献求助10
刚刚
1秒前
Xx.发布了新的文献求助10
1秒前
大大关注了科研通微信公众号
1秒前
稚祎完成签到 ,获得积分10
1秒前
1秒前
CodeCraft应助东东采纳,获得10
2秒前
3秒前
叽里咕噜完成签到 ,获得积分10
4秒前
田様应助zccc采纳,获得10
5秒前
隐形的雁完成签到,获得积分10
5秒前
追寻的秋玲完成签到,获得积分10
6秒前
李繁蕊发布了新的文献求助10
6秒前
7秒前
舒心的紫雪完成签到 ,获得积分10
8秒前
8秒前
10秒前
10秒前
11秒前
不上课不行完成签到,获得积分10
12秒前
再干一杯完成签到,获得积分10
12秒前
13秒前
汉堡包应助rudjs采纳,获得10
14秒前
14秒前
zsyzxb发布了新的文献求助10
15秒前
东东发布了新的文献求助10
15秒前
zena92发布了新的文献求助10
16秒前
锤子米完成签到,获得积分10
16秒前
16秒前
赤练仙子完成签到,获得积分10
18秒前
MnO2fff应助zsyzxb采纳,获得20
21秒前
kingwill应助zsyzxb采纳,获得20
21秒前
顺利鱼完成签到,获得积分10
22秒前
24秒前
25秒前
Xx.完成签到,获得积分10
26秒前
星辰大海应助内向凌兰采纳,获得10
26秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808