Paris Olympic (2024) Medal Tally Prediction

奖章 Lasso(编程语言) 地球仪 地理 计算机科学 心理学 万维网 考古 神经科学
作者
Prince Nagpal,Kartikey Gupta,Yashaswa Verma,Jyoti Singh Kirar
出处
期刊:Lecture notes in networks and systems 卷期号:: 249-267
标识
DOI:10.1007/978-981-99-1414-2_20
摘要

The Olympics are one of the leading international sporting events, which are broadly classified into summer and winter sports. Being one of the toughest competitions, where an enormous number of athletes from various parts of the world participate in a diversity of competitions. These games are considered to be the oldest events which also makes them one of the world's foremost sports competitions, where we witnessed active participation of 205 nations over the globe in the 2020 Tokyo Olympics. During the study for a suitable model, we discovered that there are several socioeconomic factors/variables that are good predictors and are significantly impacting a nation’s Olympic success. There were initially 10 features in the model, which were further reduced, based on the techniques of feature selection. The prediction of the Medal Tally is a difficult task, as the distribution of classes for all attributes is not separated linearly and is caused by different scales. Regression (Ter Braak and Looman in Regression, 1995 [1]) techniques like Linear, Polynomial, Ridge, Lasso, Bayesian, etc., are capable to do the prediction; however, it is tough to choose which one is the best. Thus, for this purpose we have applied here some of the popular Regression methods on the dataset for prediction. Our source data for medal prediction was taken from Official Olympic website and Wikipedia— https://olympics.com/ , https://en.wikipedia.org/wiki/2020_Summer_Olympics_medal_table , https://en.wikipedia.org/wiki/2016_Summer_Olympics_medal_table .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助Steven采纳,获得10
4秒前
6秒前
9秒前
9秒前
滔滔完成签到,获得积分10
11秒前
DOCTORLI发布了新的文献求助10
13秒前
CipherSage应助GOKU采纳,获得10
17秒前
阿柴_Htao完成签到 ,获得积分10
17秒前
淮海路小佩奇完成签到,获得积分10
19秒前
应文俊发布了新的文献求助10
21秒前
戴衡霞发布了新的文献求助10
22秒前
24秒前
24秒前
GOKU完成签到,获得积分10
27秒前
27秒前
27秒前
Jasper应助DOCTORLI采纳,获得10
28秒前
vovoking完成签到 ,获得积分10
28秒前
GOKU发布了新的文献求助10
31秒前
ccccchen发布了新的文献求助10
32秒前
cbf完成签到,获得积分10
32秒前
李健应助踏实语芙采纳,获得30
33秒前
GD发布了新的文献求助10
33秒前
34秒前
34秒前
35秒前
不信慕斯发布了新的文献求助10
36秒前
ZhJF完成签到 ,获得积分10
36秒前
myheng完成签到 ,获得积分10
37秒前
konosuba完成签到,获得积分10
37秒前
DOCTORLI发布了新的文献求助10
39秒前
栗子完成签到 ,获得积分10
39秒前
40秒前
wangkun090121发布了新的文献求助10
41秒前
42秒前
汉堡包应助斯文的傲珊采纳,获得10
42秒前
www完成签到,获得积分10
44秒前
乐正乘风完成签到,获得积分10
47秒前
48秒前
Xing发布了新的文献求助10
49秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358826
求助须知:如何正确求助?哪些是违规求助? 2981909
关于积分的说明 8701218
捐赠科研通 2663575
什么是DOI,文献DOI怎么找? 1458528
科研通“疑难数据库(出版商)”最低求助积分说明 675158
邀请新用户注册赠送积分活动 666196