Small Target Detection Algorithm for UAV Aerial Photography Based on Improved YOLOv5s

航空摄影 计算机科学 人工智能 棱锥(几何) 算法 航空影像 特征(语言学) 计算机视觉 参数统计 图像(数学) 遥感 数学 语言学 哲学 统计 几何学 地质学
作者
Jingcheng Shang,Jinsong Wang,Shenbo Liu,Chen Wang,Bin Zheng
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (11): 2434-2434 被引量:22
标识
DOI:10.3390/electronics12112434
摘要

At present, UAV aerial photography has a good prospect in agricultural production, disaster response, and other aspects. The application of UAVs can greatly improve work efficiency and decision-making accuracy. However, owing to inherent features such as a wide field of view and large differences in the target scale in UAV aerial photography images, this can lead to existing target detection algorithms missing small targets or causing incorrect detections. To solve these problems, this paper proposes a small target detection algorithm for UAV aerial photography based on improved YOLOv5s. Firstly, a small target detection layer is applied in the algorithm to improve the detection performance of small targets in aerial images. Secondly, the enhanced weighted bidirectional characteristic pyramid Mul-BiFPN is adopted to replace the PANet network to improve the speed and accuracy of target detection. Then, CIoU was replaced by Focal EIoU to accelerate network convergence and improve regression accuracy. Finally, a non-parametric attention mechanism called the M-SimAM module is added to enhance the feature extraction capability. The proposed algorithm was evaluated on the VisDrone-2019 dataset. Compared with the YOLOV5s, the algorithm improved by 7.30%, 4.60%, 5.60%, and 6.10%, respectively, in mAP@50, mAP@0.5:0.95, the accuracy rate (P), and the recall rate (R). The experiments show that the proposed algorithm has greatly improved performance on small targets compared to YOLOv5s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
海人完成签到 ,获得积分10
刚刚
今后应助苏灿采纳,获得10
1秒前
彬彬发布了新的文献求助10
2秒前
孙佳发布了新的文献求助10
3秒前
QR发布了新的文献求助10
4秒前
5秒前
xiekang发布了新的文献求助10
5秒前
科研通AI5应助帅气夏兰采纳,获得10
5秒前
6秒前
6秒前
迅速的寻绿完成签到,获得积分10
7秒前
hangongyishan完成签到,获得积分10
7秒前
研友_VZG7GZ应助月yue采纳,获得10
8秒前
啦啦啦啦发布了新的文献求助10
9秒前
WPJ发布了新的文献求助10
11秒前
苏灿发布了新的文献求助10
12秒前
科研通AI5应助正直的西牛采纳,获得10
12秒前
顺心凡之完成签到,获得积分10
15秒前
17秒前
17秒前
咕噜咕噜完成签到,获得积分20
17秒前
18秒前
18秒前
18秒前
20秒前
搜集达人应助zou采纳,获得10
21秒前
橘猫ADD发布了新的文献求助10
21秒前
蝈蝈应助蓦然回首采纳,获得10
21秒前
儒雅的傲芙完成签到,获得积分10
22秒前
wh发布了新的文献求助10
22秒前
Fiona678完成签到,获得积分10
22秒前
22秒前
啦啦啦啦发布了新的文献求助30
22秒前
linci发布了新的文献求助10
23秒前
supertkeb发布了新的文献求助10
23秒前
23秒前
英俊的铭应助Young采纳,获得10
24秒前
orixero应助Silole采纳,获得10
24秒前
carrot发布了新的文献求助10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756673
求助须知:如何正确求助?哪些是违规求助? 3300088
关于积分的说明 10112156
捐赠科研通 3014490
什么是DOI,文献DOI怎么找? 1655582
邀请新用户注册赠送积分活动 790016
科研通“疑难数据库(出版商)”最低求助积分说明 753546