Detection of skin defects in loquats based on grayscale features combined with reflectance, absorbance, and Kubelka–Munk spectra

高光谱成像 灰度 人工智能 支持向量机 主成分分析 计算机科学 模式识别(心理学) 光谱成像 光谱特征 数学 遥感 光学 像素 物理 地质学
作者
Bin Li,Zhaoyang Han,Qiu Wang,Akun Yang,Yande Liu
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:36 (11) 被引量:5
标识
DOI:10.1002/cem.3449
摘要

Abstract Skin defects are one of the main problems that occur during postharvest grading and processing of loquat, leading to deterioration of loquat, reducing the economic value of the commodity, and causing food quality and safety problems. Improving the identification rate of skin defects in loquat can reduce the economic loss caused by transportation and storage. In this paper, hyperspectral imaging technology was used to collect the reflectance (R), absorbance (A), and Kubelka–Munk (KM) spectra of loquat with skin defects for classification of defects types. Principal component analysis (PCA) was used to obtain the characteristic wavelength images. Competitive adaptive reweighted sampling (CARS), successive projections algorithm (SPA), uninformative variables elimination (UVE), and Monte Carlo combined with uninformative variables elimination (MCUVE) were used to reduce the dimension of spectral data to obtain the characteristic wavelength. The spectral data and grayscale features were used to establish the spectral model (SPEC) and grayscale features combined with spectral model (MIX). Extreme learning machine (ELM), least squares support vector machine (LS‐SVM), and k‐nearest neighbors (KNN) algorithm were applied to establish a classification model for skin defects in loquat. Comparing the model classification results of the three spectral parameters combined image features, it was found that the A‐CARS‐MIX‐ELM model had the highest accuracy, with a classification accuracy of 98.18%. The number of selected characteristic spectra was 37, accounting for 21.02% of the total spectral number of the whole band. In the online detection process of a large number of fruits, we usually need to improve the detection speed on the premise of high‐precision detection. In this case, the R‐SPA‐MIX‐ELM model can be selected, and the classification accuracy is 94.55%. The number of selected spectra is 10, accounting for 5.68% of the number of wavelengths in the whole band. Consequently, it also provides a theoretical reference for the rapid, nondestructive, and high‐precision fruit online detection technology in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
靓丽从筠完成签到 ,获得积分10
刚刚
执执发布了新的文献求助10
刚刚
共享精神应助ghy采纳,获得10
1秒前
靖靖雯完成签到,获得积分10
1秒前
LinYX完成签到,获得积分10
2秒前
NexusExplorer应助安静无敌采纳,获得10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
shadow发布了新的文献求助10
5秒前
5秒前
6秒前
桐桐应助张紫薇采纳,获得10
6秒前
7秒前
研友_VZG7GZ应助sanlunainiu采纳,获得10
7秒前
Joany发布了新的文献求助30
8秒前
8秒前
ma完成签到,获得积分10
9秒前
舒服的远望完成签到,获得积分10
9秒前
执执完成签到,获得积分10
9秒前
超级灰狼发布了新的文献求助10
10秒前
11秒前
11秒前
yt完成签到,获得积分20
12秒前
12秒前
36456657应助江江jiang采纳,获得10
12秒前
吹风的田完成签到 ,获得积分10
12秒前
dm发布了新的文献求助10
12秒前
淡定水杯完成签到,获得积分10
13秒前
13秒前
鱼啦啦完成签到,获得积分10
13秒前
Wcy发布了新的文献求助10
14秒前
认真水儿完成签到,获得积分20
14秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
知源发布了新的文献求助10
15秒前
yt发布了新的文献求助10
16秒前
景行Elysia完成签到 ,获得积分10
17秒前
窝的小卷毛完成签到,获得积分10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662735
求助须知:如何正确求助?哪些是违规求助? 3223515
关于积分的说明 9752041
捐赠科研通 2933470
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771