Central apnea detection in premature infants using machine learning

逻辑回归 呼吸暂停 接收机工作特性 医学 支持向量机 人工智能 人口 机器学习 随机森林 重症监护 儿科 计算机科学 内科学 重症监护医学 环境卫生
作者
Gabriele Varisco,Zheng Peng,Deedee Kommers,Zhuozhao Zhan,Ward Cottaar,Peter Andriessen,Xi Long,Carola van Pul
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:226: 107155-107155 被引量:10
标识
DOI:10.1016/j.cmpb.2022.107155
摘要

Apnea of prematurity is one of the most common diagnosis in neonatal intensive care units. Apneas can be classified as central, obstructive or mixed. According to the current international standards, minimal fluctuations or absence of fluctuations in the chest impedance (CI) suggest a central apnea (CA). However, automatic detection of reduced CI fluctuations leads to a high number of central apnea-suspected events (CASEs), the majority being false alarms. We aim to improve automatic detection of CAs by using machine learning to optimize detection of CAs among CASEs.Using an optimized algorithm for automated detection, all CASEs were detected in a population of 10 premature infants developing late-onset sepsis and 10 age-matched control patients. CASEs were inspected by two clinical experts and annotated as CAs or rejections in two rounds of annotations. A total of 47 features were extracted from the ECG, CI and oxygen saturation signals considering four 30 s-long moving windows, from 30 s before to 15 s after the onset of each CASE, using a moving step size of 5 s. Consecutively, new CA detection models were developed based on logistic regression with elastic net penalty, random forest and support vector machines. Performance was evaluated using both leave-one-patient-out and 10-fold cross-validation considering the mean area under the receiver-operating-characteristic curve (AUROC).The CA detection model based on logistic regression with elastic net penalty returned the highest mean AUROC when features extracted from all four time windows were included, both using leave-one-patient-out and 10-fold cross-validation (mean AUROC of 0.88 and 0.90, respectively). Feature relevance was found to be the highest for features derived from the CI. A threshold for the false positive rate in the mean receiver-operating-characteristic curve equal to 0.3 led to a high percentage of correct detections for all CAs (78.2%) and even higher for CAs followed by a bradycardia (93.4%) and CAs followed by both a bradycardia and a desaturation (95.2%), which are more critical for the well-being of premature infants.Models based on machine learning can lead to improved CA detection with fewer false alarms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Awake完成签到 ,获得积分10
4秒前
MRJJJJ完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
zhuosht完成签到 ,获得积分10
13秒前
exquisite完成签到,获得积分10
20秒前
枯叶蝶完成签到 ,获得积分10
22秒前
Lina完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
28秒前
松柏完成签到 ,获得积分10
37秒前
Junex完成签到 ,获得积分10
37秒前
村上春树的摩的完成签到 ,获得积分10
41秒前
机智的孤兰完成签到 ,获得积分10
43秒前
煲煲煲仔饭完成签到 ,获得积分10
46秒前
cata完成签到,获得积分10
46秒前
奥丁不言语完成签到 ,获得积分10
51秒前
高高菠萝完成签到 ,获得积分10
54秒前
Thi发布了新的文献求助10
54秒前
yangpengbo发布了新的文献求助10
54秒前
吃的饱饱呀完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
爱做实验的宝宝完成签到,获得积分10
1分钟前
辛勤的泽洋完成签到 ,获得积分10
1分钟前
儒雅龙完成签到 ,获得积分10
1分钟前
wwwwwl完成签到 ,获得积分10
1分钟前
xiaomingdoc完成签到 ,获得积分10
1分钟前
张正友完成签到 ,获得积分10
1分钟前
livra1058完成签到,获得积分10
1分钟前
Augenstern完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
小夜子完成签到 ,获得积分10
1分钟前
Cradoc完成签到 ,获得积分10
1分钟前
zj完成签到 ,获得积分10
1分钟前
谷谷完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
xp1911发布了新的文献求助10
1分钟前
王佳豪完成签到,获得积分10
1分钟前
lily完成签到 ,获得积分10
1分钟前
QP34完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599910
求助须知:如何正确求助?哪些是违规求助? 4685672
关于积分的说明 14838778
捐赠科研通 4673518
什么是DOI,文献DOI怎么找? 2538396
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1471013