Central apnea detection in premature infants using machine learning

逻辑回归 呼吸暂停 接收机工作特性 医学 支持向量机 人工智能 人口 机器学习 随机森林 重症监护 儿科 计算机科学 内科学 重症监护医学 环境卫生
作者
Gabriele Varisco,Zheng Peng,Deedee Kommers,Zhuozhao Zhan,Ward Cottaar,Peter Andriessen,Xi Long,Carola van Pul
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:226: 107155-107155 被引量:10
标识
DOI:10.1016/j.cmpb.2022.107155
摘要

Apnea of prematurity is one of the most common diagnosis in neonatal intensive care units. Apneas can be classified as central, obstructive or mixed. According to the current international standards, minimal fluctuations or absence of fluctuations in the chest impedance (CI) suggest a central apnea (CA). However, automatic detection of reduced CI fluctuations leads to a high number of central apnea-suspected events (CASEs), the majority being false alarms. We aim to improve automatic detection of CAs by using machine learning to optimize detection of CAs among CASEs.Using an optimized algorithm for automated detection, all CASEs were detected in a population of 10 premature infants developing late-onset sepsis and 10 age-matched control patients. CASEs were inspected by two clinical experts and annotated as CAs or rejections in two rounds of annotations. A total of 47 features were extracted from the ECG, CI and oxygen saturation signals considering four 30 s-long moving windows, from 30 s before to 15 s after the onset of each CASE, using a moving step size of 5 s. Consecutively, new CA detection models were developed based on logistic regression with elastic net penalty, random forest and support vector machines. Performance was evaluated using both leave-one-patient-out and 10-fold cross-validation considering the mean area under the receiver-operating-characteristic curve (AUROC).The CA detection model based on logistic regression with elastic net penalty returned the highest mean AUROC when features extracted from all four time windows were included, both using leave-one-patient-out and 10-fold cross-validation (mean AUROC of 0.88 and 0.90, respectively). Feature relevance was found to be the highest for features derived from the CI. A threshold for the false positive rate in the mean receiver-operating-characteristic curve equal to 0.3 led to a high percentage of correct detections for all CAs (78.2%) and even higher for CAs followed by a bradycardia (93.4%) and CAs followed by both a bradycardia and a desaturation (95.2%), which are more critical for the well-being of premature infants.Models based on machine learning can lead to improved CA detection with fewer false alarms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
良辰应助Tong采纳,获得10
1秒前
1秒前
1秒前
1秒前
2秒前
英俊的铭应助uui采纳,获得30
2秒前
cz发布了新的文献求助10
3秒前
啦啦啦发布了新的文献求助30
4秒前
小熊猫完成签到 ,获得积分10
4秒前
大模型应助谦让的醉波采纳,获得10
5秒前
标致冬日发布了新的文献求助10
6秒前
kaneki完成签到,获得积分10
7秒前
月夕发布了新的文献求助30
7秒前
kali完成签到 ,获得积分10
7秒前
彭于晏应助kzg采纳,获得10
9秒前
Akim应助ZhangL采纳,获得10
10秒前
笨笨不斜完成签到 ,获得积分10
11秒前
11秒前
FashionBoy应助hhhh采纳,获得10
13秒前
执着的赛凤完成签到,获得积分20
13秒前
着急的盼山完成签到,获得积分20
15秒前
六月关注了科研通微信公众号
16秒前
paleo-地质发布了新的文献求助10
17秒前
Fanny发布了新的文献求助10
18秒前
1111发布了新的文献求助10
18秒前
19秒前
咖啡豆完成签到,获得积分10
19秒前
19秒前
20秒前
完美世界应助Ash采纳,获得10
20秒前
kkuula完成签到,获得积分10
21秒前
ihxy发布了新的文献求助10
23秒前
搜集达人应助cxr采纳,获得10
24秒前
无敌大流流完成签到,获得积分10
24秒前
24秒前
也许发布了新的文献求助30
24秒前
25秒前
ppppp完成签到,获得积分10
25秒前
26秒前
斯文败类应助拼搏的路灯采纳,获得10
28秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
中国百部新生物碱的化学研究 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3178445
求助须知:如何正确求助?哪些是违规求助? 2829424
关于积分的说明 7971562
捐赠科研通 2490812
什么是DOI,文献DOI怎么找? 1327964
科研通“疑难数据库(出版商)”最低求助积分说明 635361
版权声明 602904