Central apnea detection in premature infants using machine learning

逻辑回归 呼吸暂停 接收机工作特性 医学 支持向量机 人工智能 人口 机器学习 随机森林 重症监护 儿科 计算机科学 内科学 重症监护医学 环境卫生
作者
Gabriele Varisco,Zheng Peng,Deedee Kommers,Zhuozhao Zhan,Ward Cottaar,Peter Andriessen,Xi Long,Carola van Pul
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:226: 107155-107155 被引量:10
标识
DOI:10.1016/j.cmpb.2022.107155
摘要

Apnea of prematurity is one of the most common diagnosis in neonatal intensive care units. Apneas can be classified as central, obstructive or mixed. According to the current international standards, minimal fluctuations or absence of fluctuations in the chest impedance (CI) suggest a central apnea (CA). However, automatic detection of reduced CI fluctuations leads to a high number of central apnea-suspected events (CASEs), the majority being false alarms. We aim to improve automatic detection of CAs by using machine learning to optimize detection of CAs among CASEs.Using an optimized algorithm for automated detection, all CASEs were detected in a population of 10 premature infants developing late-onset sepsis and 10 age-matched control patients. CASEs were inspected by two clinical experts and annotated as CAs or rejections in two rounds of annotations. A total of 47 features were extracted from the ECG, CI and oxygen saturation signals considering four 30 s-long moving windows, from 30 s before to 15 s after the onset of each CASE, using a moving step size of 5 s. Consecutively, new CA detection models were developed based on logistic regression with elastic net penalty, random forest and support vector machines. Performance was evaluated using both leave-one-patient-out and 10-fold cross-validation considering the mean area under the receiver-operating-characteristic curve (AUROC).The CA detection model based on logistic regression with elastic net penalty returned the highest mean AUROC when features extracted from all four time windows were included, both using leave-one-patient-out and 10-fold cross-validation (mean AUROC of 0.88 and 0.90, respectively). Feature relevance was found to be the highest for features derived from the CI. A threshold for the false positive rate in the mean receiver-operating-characteristic curve equal to 0.3 led to a high percentage of correct detections for all CAs (78.2%) and even higher for CAs followed by a bradycardia (93.4%) and CAs followed by both a bradycardia and a desaturation (95.2%), which are more critical for the well-being of premature infants.Models based on machine learning can lead to improved CA detection with fewer false alarms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
无花果应助ww采纳,获得10
2秒前
ZZzz发布了新的文献求助10
2秒前
3秒前
lxs159753发布了新的文献求助10
4秒前
解忧的地坛完成签到,获得积分10
4秒前
幽默盼柳发布了新的文献求助10
4秒前
zhl完成签到,获得积分10
4秒前
4秒前
怡然缘分发布了新的文献求助10
4秒前
weiwei完成签到,获得积分10
5秒前
5秒前
5秒前
隐形曼青应助大吱吱采纳,获得10
5秒前
6秒前
6秒前
研友_LJGoXn完成签到,获得积分10
7秒前
8秒前
所所应助ZZzz采纳,获得10
8秒前
呆萌语梦发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
qian发布了新的文献求助10
10秒前
144发布了新的文献求助10
10秒前
10秒前
dongdong完成签到 ,获得积分10
11秒前
兴十一完成签到,获得积分10
11秒前
芝士酱完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
乐乐应助今天不加班采纳,获得10
13秒前
结实灭男发布了新的文献求助10
13秒前
星辰大海应助lxs159753采纳,获得10
13秒前
权秋尽发布了新的文献求助10
14秒前
Criminology34应助焦雯瑶采纳,获得10
14秒前
进步面包笑哈哈应助咻咻采纳,获得10
14秒前
蒲公英完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766583
求助须知:如何正确求助?哪些是违规求助? 5565915
关于积分的说明 15413051
捐赠科研通 4900745
什么是DOI,文献DOI怎么找? 2636655
邀请新用户注册赠送积分活动 1584854
关于科研通互助平台的介绍 1540082