Central apnea detection in premature infants using machine learning

逻辑回归 呼吸暂停 接收机工作特性 医学 支持向量机 人工智能 人口 机器学习 随机森林 重症监护 儿科 计算机科学 内科学 重症监护医学 环境卫生
作者
Gabriele Varisco,Zheng Peng,Deedee Kommers,Zhuozhao Zhan,Ward Cottaar,Peter Andriessen,Xi Long,Carola van Pul
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:226: 107155-107155 被引量:10
标识
DOI:10.1016/j.cmpb.2022.107155
摘要

Apnea of prematurity is one of the most common diagnosis in neonatal intensive care units. Apneas can be classified as central, obstructive or mixed. According to the current international standards, minimal fluctuations or absence of fluctuations in the chest impedance (CI) suggest a central apnea (CA). However, automatic detection of reduced CI fluctuations leads to a high number of central apnea-suspected events (CASEs), the majority being false alarms. We aim to improve automatic detection of CAs by using machine learning to optimize detection of CAs among CASEs.Using an optimized algorithm for automated detection, all CASEs were detected in a population of 10 premature infants developing late-onset sepsis and 10 age-matched control patients. CASEs were inspected by two clinical experts and annotated as CAs or rejections in two rounds of annotations. A total of 47 features were extracted from the ECG, CI and oxygen saturation signals considering four 30 s-long moving windows, from 30 s before to 15 s after the onset of each CASE, using a moving step size of 5 s. Consecutively, new CA detection models were developed based on logistic regression with elastic net penalty, random forest and support vector machines. Performance was evaluated using both leave-one-patient-out and 10-fold cross-validation considering the mean area under the receiver-operating-characteristic curve (AUROC).The CA detection model based on logistic regression with elastic net penalty returned the highest mean AUROC when features extracted from all four time windows were included, both using leave-one-patient-out and 10-fold cross-validation (mean AUROC of 0.88 and 0.90, respectively). Feature relevance was found to be the highest for features derived from the CI. A threshold for the false positive rate in the mean receiver-operating-characteristic curve equal to 0.3 led to a high percentage of correct detections for all CAs (78.2%) and even higher for CAs followed by a bradycardia (93.4%) and CAs followed by both a bradycardia and a desaturation (95.2%), which are more critical for the well-being of premature infants.Models based on machine learning can lead to improved CA detection with fewer false alarms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liyuchen发布了新的文献求助10
刚刚
ipeakkka完成签到,获得积分20
2秒前
马克发布了新的文献求助10
2秒前
赵OO完成签到,获得积分10
2秒前
Yon完成签到 ,获得积分10
3秒前
呆头完成签到,获得积分10
3秒前
科研通AI5应助skier采纳,获得10
4秒前
ywang发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
keyantong完成签到 ,获得积分10
10秒前
booshu完成签到,获得积分10
11秒前
jy发布了新的文献求助10
12秒前
朴斓完成签到,获得积分10
12秒前
科研通AI5应助魏伯安采纳,获得10
15秒前
哈密哈密完成签到,获得积分10
15秒前
15秒前
Ava应助浪迹天涯采纳,获得10
15秒前
16秒前
安南发布了新的文献求助10
16秒前
17秒前
healthy完成签到 ,获得积分10
17秒前
18秒前
刘大可完成签到,获得积分10
18秒前
21秒前
su发布了新的文献求助10
21秒前
rookie发布了新的文献求助10
22秒前
方勇飞发布了新的文献求助10
23秒前
郭菱香完成签到 ,获得积分20
23秒前
皮念寒完成签到,获得积分10
23秒前
顺其自然_666888完成签到,获得积分10
23秒前
24秒前
向上的小v完成签到 ,获得积分10
25秒前
25秒前
27秒前
酷酷紫蓝完成签到 ,获得积分10
27秒前
27秒前
方勇飞完成签到,获得积分10
27秒前
LYZ完成签到,获得积分10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824