SNM Radiation Signature Classification Using Different Semi-Supervised Machine Learning Models

机器学习 计算机科学 人工智能 监督学习 卷积神经网络 支持向量机 人工神经网络
作者
Jordan Stomps,Paul P. H. Wilson,Kenneth Dayman,Michael J. Willis,James Ghawaly,D. E. Archer
出处
期刊:Journal of nuclear engineering [MDPI AG]
卷期号:4 (3): 448-466
标识
DOI:10.3390/jne4030032
摘要

The timely detection of special nuclear material (SNM) transfers between nuclear facilities is an important monitoring objective in nuclear nonproliferation. Persistent monitoring enabled by successful detection and characterization of radiological material movements could greatly enhance the nuclear nonproliferation mission in a range of applications. Supervised machine learning can be used to signal detections when material is present if a model is trained on sufficient volumes of labeled measurements. However, the nuclear monitoring data needed to train robust machine learning models can be costly to label since radiation spectra may require strict scrutiny for characterization. Therefore, this work investigates the application of semi-supervised learning to utilize both labeled and unlabeled data. As a demonstration experiment, radiation measurements from sodium iodide (NaI) detectors are provided by the Multi-Informatics for Nuclear Operating Scenarios (MINOS) venture at Oak Ridge National Laboratory (ORNL) as sample data. Anomalous measurements are identified using a method of statistical hypothesis testing. After background estimation, an energy-dependent spectroscopic analysis is used to characterize an anomaly based on its radiation signatures. In the absence of ground-truth information, a labeling heuristic provides data necessary for training and testing machine learning models. Supervised logistic regression serves as a baseline to compare three semi-supervised machine learning models: co-training, label propagation, and a convolutional neural network (CNN). In each case, the semi-supervised models outperform logistic regression, suggesting that unlabeled data can be valuable when training and demonstrating value in semi-supervised nonproliferation implementations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dongjingbutaire完成签到,获得积分10
1秒前
李妍妍完成签到,获得积分10
2秒前
星月夜完成签到,获得积分10
2秒前
俭朴觅松发布了新的文献求助10
2秒前
卢振杰发布了新的文献求助10
4秒前
4秒前
AO完成签到,获得积分10
4秒前
稻草人发布了新的文献求助10
4秒前
CC完成签到,获得积分10
5秒前
duoduozs完成签到,获得积分10
6秒前
lei发布了新的文献求助10
6秒前
qingche完成签到 ,获得积分10
6秒前
gyhk完成签到,获得积分10
6秒前
科目三应助勤恳思天采纳,获得10
7秒前
无辜大神完成签到,获得积分10
7秒前
SY完成签到,获得积分10
7秒前
无聊的霸完成签到,获得积分10
7秒前
小衰帅完成签到,获得积分10
7秒前
无风之旅完成签到,获得积分10
8秒前
不器完成签到 ,获得积分10
8秒前
ice7完成签到,获得积分10
8秒前
华仔应助Nancy采纳,获得10
8秒前
朱gui完成签到,获得积分10
8秒前
GWF完成签到,获得积分10
10秒前
10秒前
烟花应助元谷雪采纳,获得10
10秒前
prejudice发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
小西完成签到,获得积分10
12秒前
1234567完成签到,获得积分10
12秒前
靓丽初蓝完成签到,获得积分10
13秒前
科目三应助江梁采纳,获得10
13秒前
哆啦A梦完成签到,获得积分10
13秒前
森森完成签到,获得积分10
13秒前
13秒前
嗷嗷待哺狼完成签到,获得积分10
13秒前
子车茗应助ssss采纳,获得20
13秒前
14秒前
呱嚓发布了新的文献求助10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698957
求助须知:如何正确求助?哪些是违规求助? 5127856
关于积分的说明 15223496
捐赠科研通 4853894
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555882
关于科研通互助平台的介绍 1514222