SNM Radiation Signature Classification Using Different Semi-Supervised Machine Learning Models

机器学习 计算机科学 人工智能 监督学习 卷积神经网络 支持向量机 人工神经网络
作者
Jordan Stomps,Paul P. H. Wilson,Kenneth Dayman,Michael J. Willis,James Ghawaly,D. E. Archer
出处
期刊:Journal of nuclear engineering [MDPI AG]
卷期号:4 (3): 448-466
标识
DOI:10.3390/jne4030032
摘要

The timely detection of special nuclear material (SNM) transfers between nuclear facilities is an important monitoring objective in nuclear nonproliferation. Persistent monitoring enabled by successful detection and characterization of radiological material movements could greatly enhance the nuclear nonproliferation mission in a range of applications. Supervised machine learning can be used to signal detections when material is present if a model is trained on sufficient volumes of labeled measurements. However, the nuclear monitoring data needed to train robust machine learning models can be costly to label since radiation spectra may require strict scrutiny for characterization. Therefore, this work investigates the application of semi-supervised learning to utilize both labeled and unlabeled data. As a demonstration experiment, radiation measurements from sodium iodide (NaI) detectors are provided by the Multi-Informatics for Nuclear Operating Scenarios (MINOS) venture at Oak Ridge National Laboratory (ORNL) as sample data. Anomalous measurements are identified using a method of statistical hypothesis testing. After background estimation, an energy-dependent spectroscopic analysis is used to characterize an anomaly based on its radiation signatures. In the absence of ground-truth information, a labeling heuristic provides data necessary for training and testing machine learning models. Supervised logistic regression serves as a baseline to compare three semi-supervised machine learning models: co-training, label propagation, and a convolutional neural network (CNN). In each case, the semi-supervised models outperform logistic regression, suggesting that unlabeled data can be valuable when training and demonstrating value in semi-supervised nonproliferation implementations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
休眠补正完成签到,获得积分10
1秒前
marco完成签到,获得积分10
1秒前
2秒前
漠池完成签到,获得积分10
2秒前
2秒前
3秒前
5秒前
tangsenlin完成签到,获得积分10
6秒前
xuxingjie完成签到,获得积分10
7秒前
jiajia完成签到 ,获得积分10
7秒前
蓬蓬完成签到,获得积分10
8秒前
Hades001发布了新的文献求助10
8秒前
8秒前
迷路的八宝粥完成签到,获得积分10
10秒前
11秒前
12秒前
六六应助科研通管家采纳,获得10
12秒前
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得50
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
贝贝应助科研通管家采纳,获得150
12秒前
CipherSage应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得50
13秒前
小蘑菇应助科研通管家采纳,获得30
13秒前
科研通AI6应助科研通管家采纳,获得30
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
14秒前
李健应助hotdx采纳,获得10
14秒前
14秒前
李爱国应助魁梧的盼雁采纳,获得10
14秒前
16秒前
Kelly完成签到,获得积分10
16秒前
哈哈嘻嘻呵呵完成签到,获得积分20
18秒前
YixiaoWang完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5050228
求助须知:如何正确求助?哪些是违规求助? 4277937
关于积分的说明 13335101
捐赠科研通 4092926
什么是DOI,文献DOI怎么找? 2239930
邀请新用户注册赠送积分活动 1246633
关于科研通互助平台的介绍 1175445