SNM Radiation Signature Classification Using Different Semi-Supervised Machine Learning Models

机器学习 计算机科学 人工智能 监督学习 卷积神经网络 支持向量机 人工神经网络
作者
Jordan Stomps,Paul P. H. Wilson,Kenneth Dayman,Michael J. Willis,James Ghawaly,D. E. Archer
出处
期刊:Journal of nuclear engineering [MDPI AG]
卷期号:4 (3): 448-466
标识
DOI:10.3390/jne4030032
摘要

The timely detection of special nuclear material (SNM) transfers between nuclear facilities is an important monitoring objective in nuclear nonproliferation. Persistent monitoring enabled by successful detection and characterization of radiological material movements could greatly enhance the nuclear nonproliferation mission in a range of applications. Supervised machine learning can be used to signal detections when material is present if a model is trained on sufficient volumes of labeled measurements. However, the nuclear monitoring data needed to train robust machine learning models can be costly to label since radiation spectra may require strict scrutiny for characterization. Therefore, this work investigates the application of semi-supervised learning to utilize both labeled and unlabeled data. As a demonstration experiment, radiation measurements from sodium iodide (NaI) detectors are provided by the Multi-Informatics for Nuclear Operating Scenarios (MINOS) venture at Oak Ridge National Laboratory (ORNL) as sample data. Anomalous measurements are identified using a method of statistical hypothesis testing. After background estimation, an energy-dependent spectroscopic analysis is used to characterize an anomaly based on its radiation signatures. In the absence of ground-truth information, a labeling heuristic provides data necessary for training and testing machine learning models. Supervised logistic regression serves as a baseline to compare three semi-supervised machine learning models: co-training, label propagation, and a convolutional neural network (CNN). In each case, the semi-supervised models outperform logistic regression, suggesting that unlabeled data can be valuable when training and demonstrating value in semi-supervised nonproliferation implementations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wohawohaa完成签到,获得积分10
刚刚
彭蓬给彭蓬的求助进行了留言
1秒前
1秒前
实验顺利应助Gavin采纳,获得30
1秒前
吕曼完成签到,获得积分10
1秒前
晨晨晨完成签到,获得积分10
2秒前
egoistMM完成签到,获得积分10
2秒前
清心淡如水完成签到 ,获得积分10
2秒前
2秒前
冰冰大王发布了新的文献求助20
3秒前
Jasper应助修澈采纳,获得10
3秒前
霜降发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
小鹿5460完成签到,获得积分10
4秒前
lylyspeechless完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
小妮子发布了新的文献求助10
5秒前
xiaoxiao完成签到,获得积分10
5秒前
5秒前
5秒前
Jiping Ni完成签到,获得积分10
5秒前
JY'完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
胡雅琴完成签到,获得积分10
7秒前
chigga发布了新的文献求助10
9秒前
subohr完成签到,获得积分10
9秒前
FBSoos发布了新的文献求助10
10秒前
坚强胡萝卜完成签到,获得积分10
10秒前
先知完成签到,获得积分10
10秒前
大方的白开水完成签到,获得积分10
10秒前
miaogm完成签到,获得积分10
10秒前
Hello应助红红采纳,获得10
11秒前
jhd发布了新的文献求助10
11秒前
斯文败类应助chigga采纳,获得10
11秒前
666发布了新的文献求助10
11秒前
hahaha完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027