SNM Radiation Signature Classification Using Different Semi-Supervised Machine Learning Models

机器学习 计算机科学 人工智能 监督学习 卷积神经网络 支持向量机 人工神经网络
作者
Jordan Stomps,Paul P. H. Wilson,Kenneth Dayman,Michael J. Willis,James Ghawaly,D. E. Archer
出处
期刊:Journal of nuclear engineering [MDPI AG]
卷期号:4 (3): 448-466
标识
DOI:10.3390/jne4030032
摘要

The timely detection of special nuclear material (SNM) transfers between nuclear facilities is an important monitoring objective in nuclear nonproliferation. Persistent monitoring enabled by successful detection and characterization of radiological material movements could greatly enhance the nuclear nonproliferation mission in a range of applications. Supervised machine learning can be used to signal detections when material is present if a model is trained on sufficient volumes of labeled measurements. However, the nuclear monitoring data needed to train robust machine learning models can be costly to label since radiation spectra may require strict scrutiny for characterization. Therefore, this work investigates the application of semi-supervised learning to utilize both labeled and unlabeled data. As a demonstration experiment, radiation measurements from sodium iodide (NaI) detectors are provided by the Multi-Informatics for Nuclear Operating Scenarios (MINOS) venture at Oak Ridge National Laboratory (ORNL) as sample data. Anomalous measurements are identified using a method of statistical hypothesis testing. After background estimation, an energy-dependent spectroscopic analysis is used to characterize an anomaly based on its radiation signatures. In the absence of ground-truth information, a labeling heuristic provides data necessary for training and testing machine learning models. Supervised logistic regression serves as a baseline to compare three semi-supervised machine learning models: co-training, label propagation, and a convolutional neural network (CNN). In each case, the semi-supervised models outperform logistic regression, suggesting that unlabeled data can be valuable when training and demonstrating value in semi-supervised nonproliferation implementations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kjingknk完成签到 ,获得积分10
刚刚
1秒前
you发布了新的文献求助10
2秒前
ding7862完成签到,获得积分10
2秒前
FashionBoy应助roro熊采纳,获得10
2秒前
JamesPei应助龙江游侠采纳,获得10
3秒前
3秒前
4秒前
7秒前
英俊延恶发布了新的文献求助30
7秒前
洪山老狗完成签到,获得积分10
7秒前
lh961129发布了新的文献求助10
8秒前
覃小冬发布了新的文献求助10
8秒前
壮观的哈密瓜完成签到,获得积分10
9秒前
科目三应助森森采纳,获得10
10秒前
漠池完成签到,获得积分10
11秒前
roro熊发布了新的文献求助10
13秒前
龙江游侠完成签到,获得积分10
14秒前
14秒前
enen完成签到,获得积分10
14秒前
14秒前
肥仔龙完成签到,获得积分10
15秒前
刘振坤完成签到,获得积分10
15秒前
龙江游侠发布了新的文献求助10
17秒前
萧雨墨发布了新的文献求助10
19秒前
激动的爆米花关注了科研通微信公众号
19秒前
cy发布了新的文献求助10
19秒前
Lucas应助香菜芋头采纳,获得10
19秒前
19秒前
风清扬发布了新的文献求助30
20秒前
隐形曼青应助jason采纳,获得30
21秒前
AJY完成签到,获得积分10
22秒前
aaaaaa发布了新的文献求助10
23秒前
25秒前
传奇3应助AJY采纳,获得10
26秒前
cy完成签到,获得积分10
28秒前
传奇3应助aaaaaa采纳,获得10
29秒前
单纯黑米发布了新的文献求助10
30秒前
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565531
求助须知:如何正确求助?哪些是违规求助? 4650613
关于积分的说明 14691991
捐赠科研通 4592552
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492065
关于科研通互助平台的介绍 1463281