伤口愈合
生物相容性
明胶
成纤维细胞
血管生成
再生(生物学)
体内
真皮成纤维细胞
化学
生物医学工程
材料科学
细胞生物学
免疫学
体外
生物化学
医学
生物
癌症研究
生物技术
有机化学
作者
Esmaeel Sharifi,Satar Yousefiasl,Nilofar Laderian,Navid Rabiee,Pooyan Makvandi,Samiramis Pourmotabed,Milad Ashrafizadeh,Fatemeh Familsattarian,Fang Wei
标识
DOI:10.1016/j.ijbiomac.2023.125898
摘要
An optimal tissue-engineered dermal substitute should possess biocompatibility and cell adhesion conduction to facilitate fibroblast and keratinocyte infiltration and proliferation, as well as angiogenesis potential to escalate wound healing. Zinc was doped to bioactive glass-ceramic (Zn-BGC) to promote biocompatibility and angiogenesis properties. Zn-BGC was then incorporated into a collagen (Col) and gelatin (Gel) porous scaffold. The bioactive porous bionanocomposite exhibited biocompatibility along with improved cell attachment and proliferation. Scaffolds including Col-Gel/Zn-BGC with or without mouse embryonic fibroblasts were applied on full-thickness skin wounds on the BALB/c mice to assess their wound healing potential in vivo. The results indicated that the biodegradation rate of the Col-Gel/Zn-BGC nanocomposites was comparable to the rate of skin tissue regeneration in vivo. Macroscopic wound healing results showed that Col-Gel/Zn-BGC loaded with mouse embryonic fibroblast possesses the smallest wound size, indicating the fastest healing process. Histopathological evaluations displayed that the optimal wound regeneration was observed in Col-Gel/Zn-BGC nanocomposites loaded with mouse embryonic fibroblasts indicated by epithelialization and angiogenesis; besides the number of fibroblasts and hair follicles was increased. The bioactive nanocomposite scaffold of Col-Gel containing Zn-BGC nanoparticles loaded with mouse embryonic fibroblasts can be employed as a desirable skin substitute to ameliorate cutaneous wound regeneration.
科研通智能强力驱动
Strongly Powered by AbleSci AI