Identification and Classification of Human Body Exercises on Smart Textile Bands by Combining Decision Tree and Convolutional Neural Networks

卷积神经网络 人工智能 计算机科学 惯性测量装置 决策树 机器学习 人工神经网络 维数(图论) 树(集合论) 模式识别(心理学) 鉴定(生物学) 数学分析 植物 数学 纯数学 生物
作者
Bon-Hak Koo,Ngoc Tram Nguyen,Jooyong Kim
出处
期刊:Sensors [MDPI AG]
卷期号:23 (13): 6223-6223 被引量:4
标识
DOI:10.3390/s23136223
摘要

In recent years, human activity recognition (HAR) has gained significant interest from researchers in the sports and fitness industries. In this study, the authors have proposed a cascaded method including two classifying stages to classify fitness exercises, utilizing a decision tree as the first stage and a one-dimension convolutional neural network as the second stage. The data acquisition was carried out by five participants performing exercises while wearing an inertial measurement unit sensor attached to a wristband on their wrists. However, only data acquired along the z-axis of the IMU accelerator was used as input to train and test the proposed model, to simplify the model and optimize the training time while still achieving good performance. To examine the efficiency of the proposed method, the authors compared the performance of the cascaded model and the conventional 1D-CNN model. The obtained results showed an overall improvement in the accuracy of exercise classification by the proposed model, which was approximately 92%, compared to 82.4% for the 1D-CNN model. In addition, the authors suggested and evaluated two methods to optimize the clustering outcome of the first stage in the cascaded model. This research demonstrates that the proposed model, with advantages in terms of training time and computational cost, is able to classify fitness workouts with high performance. Therefore, with further development, it can be applied in various real-time HAR applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木wm发布了新的文献求助10
1秒前
1秒前
栀清完成签到,获得积分10
1秒前
3秒前
4秒前
Chen发布了新的文献求助10
5秒前
7秒前
15884134873完成签到,获得积分10
9秒前
聪明凝海发布了新的文献求助10
11秒前
丘比特应助泡泡糖采纳,获得10
12秒前
12秒前
不懈奋进应助Cathy采纳,获得30
12秒前
13秒前
斯文败类应助WZH采纳,获得10
13秒前
北念霜oD4发布了新的文献求助10
17秒前
19秒前
Shuo Yang发布了新的文献求助20
21秒前
bjr完成签到 ,获得积分10
21秒前
22秒前
Sweger完成签到,获得积分10
22秒前
24秒前
Wenhao Zhao发布了新的文献求助10
24秒前
yifanchen应助科研通管家采纳,获得20
26秒前
仔仔完成签到 ,获得积分10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
小二郎应助科研通管家采纳,获得10
27秒前
28秒前
sky发布了新的文献求助10
29秒前
29秒前
顺利一德发布了新的文献求助10
29秒前
paz关注了科研通微信公众号
30秒前
疯狂的代梅完成签到,获得积分10
30秒前
复杂的路人完成签到,获得积分10
31秒前
投机倒把完成签到,获得积分10
31秒前
脑洞疼应助ke采纳,获得10
31秒前
毓汐发布了新的文献求助10
32秒前
34秒前
现代的芹完成签到,获得积分10
34秒前
ZZH完成签到,获得积分10
35秒前
kaede完成签到,获得积分10
35秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Synchrotron X-Ray Methods in Clay Science 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3345929
求助须知:如何正确求助?哪些是违规求助? 2972753
关于积分的说明 8656093
捐赠科研通 2653094
什么是DOI,文献DOI怎么找? 1452992
科研通“疑难数据库(出版商)”最低求助积分说明 672705
邀请新用户注册赠送积分活动 662574