Identification and Classification of Human Body Exercises on Smart Textile Bands by Combining Decision Tree and Convolutional Neural Networks

卷积神经网络 人工智能 计算机科学 惯性测量装置 决策树 机器学习 人工神经网络 维数(图论) 树(集合论) 模式识别(心理学) 鉴定(生物学) 数学 植物 生物 数学分析 纯数学
作者
Bon-Hak Koo,Ngoc Tram Nguyen,Jooyong Kim
出处
期刊:Sensors [MDPI AG]
卷期号:23 (13): 6223-6223 被引量:4
标识
DOI:10.3390/s23136223
摘要

In recent years, human activity recognition (HAR) has gained significant interest from researchers in the sports and fitness industries. In this study, the authors have proposed a cascaded method including two classifying stages to classify fitness exercises, utilizing a decision tree as the first stage and a one-dimension convolutional neural network as the second stage. The data acquisition was carried out by five participants performing exercises while wearing an inertial measurement unit sensor attached to a wristband on their wrists. However, only data acquired along the z-axis of the IMU accelerator was used as input to train and test the proposed model, to simplify the model and optimize the training time while still achieving good performance. To examine the efficiency of the proposed method, the authors compared the performance of the cascaded model and the conventional 1D-CNN model. The obtained results showed an overall improvement in the accuracy of exercise classification by the proposed model, which was approximately 92%, compared to 82.4% for the 1D-CNN model. In addition, the authors suggested and evaluated two methods to optimize the clustering outcome of the first stage in the cascaded model. This research demonstrates that the proposed model, with advantages in terms of training time and computational cost, is able to classify fitness workouts with high performance. Therefore, with further development, it can be applied in various real-time HAR applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时尚的芹发布了新的文献求助10
刚刚
1秒前
qianzheng完成签到 ,获得积分10
1秒前
霜鸣完成签到,获得积分10
1秒前
科目三应助研友_zndKVL采纳,获得10
2秒前
嘻嘻哈哈应助krinnme采纳,获得10
2秒前
LL发布了新的文献求助10
2秒前
科研通AI6应助ww采纳,获得10
3秒前
CodeCraft应助张狗蛋采纳,获得10
5秒前
SciGPT应助梅哈采纳,获得10
5秒前
烙饼完成签到,获得积分10
7秒前
LL完成签到,获得积分20
7秒前
欢喜的忘幽完成签到 ,获得积分10
8秒前
过眼云烟完成签到,获得积分10
10秒前
Owen应助Xx采纳,获得10
10秒前
欢喜的忘幽关注了科研通微信公众号
11秒前
漠池完成签到,获得积分10
13秒前
大模型应助淡然的蓝天采纳,获得10
15秒前
Peng完成签到 ,获得积分10
15秒前
17秒前
17秒前
浮游应助wzz采纳,获得10
18秒前
梅哈发布了新的文献求助10
22秒前
23秒前
张狗蛋发布了新的文献求助10
24秒前
Owen应助张一采纳,获得10
25秒前
26秒前
27秒前
29秒前
30秒前
31秒前
隐形的天问完成签到,获得积分20
32秒前
金阿林在科研应助zzr采纳,获得10
32秒前
研友_zndKVL发布了新的文献求助10
32秒前
胡萝卜发布了新的文献求助10
33秒前
34秒前
轻松的采柳完成签到 ,获得积分10
36秒前
swallow发布了新的文献求助10
39秒前
大模型应助研友_zndKVL采纳,获得10
39秒前
小学猹完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373754
求助须知:如何正确求助?哪些是违规求助? 4499770
关于积分的说明 14007232
捐赠科研通 4406707
什么是DOI,文献DOI怎么找? 2420672
邀请新用户注册赠送积分活动 1413421
关于科研通互助平台的介绍 1389992