卷积神经网络
人工智能
计算机科学
惯性测量装置
决策树
机器学习
人工神经网络
维数(图论)
树(集合论)
模式识别(心理学)
鉴定(生物学)
数学分析
植物
数学
纯数学
生物
作者
Bon-Hak Koo,Ngoc Tram Nguyen,Jooyong Kim
出处
期刊:Sensors
[MDPI AG]
日期:2023-07-07
卷期号:23 (13): 6223-6223
被引量:4
摘要
In recent years, human activity recognition (HAR) has gained significant interest from researchers in the sports and fitness industries. In this study, the authors have proposed a cascaded method including two classifying stages to classify fitness exercises, utilizing a decision tree as the first stage and a one-dimension convolutional neural network as the second stage. The data acquisition was carried out by five participants performing exercises while wearing an inertial measurement unit sensor attached to a wristband on their wrists. However, only data acquired along the z-axis of the IMU accelerator was used as input to train and test the proposed model, to simplify the model and optimize the training time while still achieving good performance. To examine the efficiency of the proposed method, the authors compared the performance of the cascaded model and the conventional 1D-CNN model. The obtained results showed an overall improvement in the accuracy of exercise classification by the proposed model, which was approximately 92%, compared to 82.4% for the 1D-CNN model. In addition, the authors suggested and evaluated two methods to optimize the clustering outcome of the first stage in the cascaded model. This research demonstrates that the proposed model, with advantages in terms of training time and computational cost, is able to classify fitness workouts with high performance. Therefore, with further development, it can be applied in various real-time HAR applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI