Identification and Classification of Human Body Exercises on Smart Textile Bands by Combining Decision Tree and Convolutional Neural Networks

卷积神经网络 人工智能 计算机科学 惯性测量装置 决策树 机器学习 人工神经网络 维数(图论) 树(集合论) 模式识别(心理学) 鉴定(生物学) 数学 植物 生物 数学分析 纯数学
作者
Bon-Hak Koo,Ngoc Tram Nguyen,Jooyong Kim
出处
期刊:Sensors [MDPI AG]
卷期号:23 (13): 6223-6223 被引量:4
标识
DOI:10.3390/s23136223
摘要

In recent years, human activity recognition (HAR) has gained significant interest from researchers in the sports and fitness industries. In this study, the authors have proposed a cascaded method including two classifying stages to classify fitness exercises, utilizing a decision tree as the first stage and a one-dimension convolutional neural network as the second stage. The data acquisition was carried out by five participants performing exercises while wearing an inertial measurement unit sensor attached to a wristband on their wrists. However, only data acquired along the z-axis of the IMU accelerator was used as input to train and test the proposed model, to simplify the model and optimize the training time while still achieving good performance. To examine the efficiency of the proposed method, the authors compared the performance of the cascaded model and the conventional 1D-CNN model. The obtained results showed an overall improvement in the accuracy of exercise classification by the proposed model, which was approximately 92%, compared to 82.4% for the 1D-CNN model. In addition, the authors suggested and evaluated two methods to optimize the clustering outcome of the first stage in the cascaded model. This research demonstrates that the proposed model, with advantages in terms of training time and computational cost, is able to classify fitness workouts with high performance. Therefore, with further development, it can be applied in various real-time HAR applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NN应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
CodeCraft应助xuhaoo0125采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
ex_ritian完成签到,获得积分10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
MM完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
fxsg发布了新的文献求助10
3秒前
开朗的雁完成签到,获得积分10
3秒前
坚强幼荷发布了新的文献求助10
3秒前
5秒前
GPTea应助chi111采纳,获得20
5秒前
6秒前
7秒前
郭甜甜发布了新的文献求助10
7秒前
今后应助刘恩瑜采纳,获得10
7秒前
8秒前
呆萌的u完成签到,获得积分10
8秒前
277发布了新的文献求助10
8秒前
8秒前
9秒前
天真大神发布了新的文献求助10
9秒前
Yvon完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
乐乐应助Galato采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704559
求助须知:如何正确求助?哪些是违规求助? 5158120
关于积分的说明 15242392
捐赠科研通 4858539
什么是DOI,文献DOI怎么找? 2607330
邀请新用户注册赠送积分活动 1558287
关于科研通互助平台的介绍 1516105