A Deep Learning Inversion Method for 3-D Electrical Resistivity Tomography Based on Neighborhood Feature Extraction

电阻率和电导率 电阻率层析成像 加权 人工神经网络 人工智能 特征提取 卷积神经网络 算法 模式识别(心理学) 地质学 计算机科学 物理 声学 量子力学
作者
Qian Guo,Benchao Liu,Yaxu Wang,Dongdong He
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (16): 18550-18558 被引量:7
标识
DOI:10.1109/jsen.2023.3293205
摘要

Electrical resistivity tomography (ERT) is one of the most popular methods in geological exploration. When reconstructing the 3-D resistivity model directly from the apparent resistivity data, it has two main challenges: first, the apparent resistivity data obtained from the survey lines are limited, which is much less than the true model parameters. Second, the sensitivity of the data to the model has uneven spatial distribution. In this article, a novel deep learning algorithm is proposed to reconstruct a 3-D resistivity model directly from apparent resistivity data. The new resistivity inversion deep neural network (DNN) is based on neighborhood feature extraction. By using the limited observational apparent resistivity data profiles, the neighborhood features are extracted through a fully connected network to provide the augmented data so that the spatial correspondence between the input apparent resistivity data and the output resistivity model can be enhanced. A 3-D U-Net convolutional neural network is used to learn the attribute information feature relationship spatially aligned with the resistivity model from these augmented data. After that, the 3-D resistivity model is reconstructed. It is worth to point out that, a depth distance weighting constraint is added into the loss function to balance the sensitivity distribution of the different apparent resistivity data profiles and to improve the imaging effect between apparent resistivity data profiles and areas that far away from these data profiles. Finally, the effectiveness and reliability of the newly proposed DNN are verified through numerical simulations and field tests.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
swordshine完成签到,获得积分10
2秒前
斯文败类应助田静然采纳,获得10
3秒前
今后应助小鱼在学习采纳,获得10
6秒前
在水一方应助帝企鹅采纳,获得50
6秒前
6秒前
7秒前
jyy应助AMENG采纳,获得50
8秒前
9秒前
11秒前
FashionBoy应助weiwei采纳,获得10
11秒前
CHENXIN532完成签到,获得积分10
13秒前
王蔚染完成签到,获得积分10
14秒前
14秒前
Yippee发布了新的文献求助10
14秒前
15秒前
bkagyin应助redblue采纳,获得10
16秒前
肥肥熊完成签到,获得积分10
17秒前
体贴的叛逆者完成签到,获得积分10
18秒前
小鱼在学习完成签到,获得积分20
18秒前
无花果应助猪猪hero采纳,获得10
18秒前
19秒前
七月完成签到 ,获得积分10
19秒前
brianzk1989完成签到,获得积分0
20秒前
Lucas应助耍酷的绿蓉采纳,获得10
21秒前
21秒前
ding应助科研采纳,获得10
21秒前
QSJ完成签到,获得积分10
21秒前
龙痕完成签到,获得积分10
24秒前
帝企鹅发布了新的文献求助50
24秒前
酷酷秀发完成签到,获得积分10
24秒前
25秒前
25秒前
酷波er应助科研通管家采纳,获得10
25秒前
搜集达人应助Laolin采纳,获得10
25秒前
深情安青应助科研通管家采纳,获得10
25秒前
FashionBoy应助科研通管家采纳,获得10
25秒前
领导范儿应助科研通管家采纳,获得20
25秒前
25秒前
NexusExplorer应助科研通管家采纳,获得10
25秒前
惊鸿客应助科研通管家采纳,获得10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774420
求助须知:如何正确求助?哪些是违规求助? 3320128
关于积分的说明 10198570
捐赠科研通 3034739
什么是DOI,文献DOI怎么找? 1665166
邀请新用户注册赠送积分活动 796697
科研通“疑难数据库(出版商)”最低求助积分说明 757549