Dual-path multi-scale context dense aggregation network for retinal vessel segmentation

计算机科学 分割 人工智能 背景(考古学) 特征(语言学) 棱锥(几何) 过度拟合 联营 模式识别(心理学) 深度学习 计算机视觉 人工神经网络 数学 古生物学 语言学 哲学 几何学 生物
作者
Wei Zhou,Weiqi Bai,Jianhang Ji,Yugen Yi,Ningyi Zhang,Wei Cui
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:164: 107269-107269 被引量:26
标识
DOI:10.1016/j.compbiomed.2023.107269
摘要

There has been steady progress in the field of deep learning-based blood vessel segmentation. However, several challenging issues still continue to limit its progress, including inadequate sample sizes, the neglect of contextual information, and the loss of microvascular details. To address these limitations, we propose a dual-path deep learning framework for blood vessel segmentation. In our framework, the fundus images are divided into concentric patches with different scales to alleviate the overfitting problem. Then, a Multi-scale Context Dense Aggregation Network (MCDAU-Net) is proposed to accurately extract the blood vessel boundaries from these patches. In MCDAU-Net, a Cascaded Dilated Spatial Pyramid Pooling (CDSPP) module is designed and incorporated into intermediate layers of the model, enhancing the receptive field and producing feature maps enriched with contextual information. To improve segmentation performance for low-contrast vessels, we propose an InceptionConv (IConv) module, which can explore deeper semantic features and suppress the propagation of non-vessel information. Furthermore, we design a Multi-scale Adaptive Feature Aggregation (MAFA) module to fuse the multi-scale feature by assigning adaptive weight coefficients to different feature maps through skip connections. Finally, to explore the complementary contextual information and enhance the continuity of microvascular structures, a fusion module is designed to combine the segmentation results obtained from patches of different sizes, achieving fine microvascular segmentation performance. In order to assess the effectiveness of our approach, we conducted evaluations on three widely-used public datasets: DRIVE, CHASE-DB1, and STARE. Our findings reveal a remarkable advancement over the current state-of-the-art (SOTA) techniques, with the mean values of Se and F1 scores being an increase of 7.9% and 4.7%, respectively. The code is available at https://github.com/bai101315/MCDAU-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
zhuuu发布了新的文献求助10
2秒前
望北楼主发布了新的文献求助30
2秒前
星空物语完成签到,获得积分10
3秒前
华仔应助大意的以菱采纳,获得10
4秒前
YingxueRen完成签到,获得积分10
4秒前
4秒前
搬运工应助20000采纳,获得20
5秒前
Sakuragiii发布了新的文献求助10
5秒前
5秒前
6秒前
SHAO应助Mario采纳,获得30
6秒前
6秒前
6秒前
jiaying完成签到,获得积分10
7秒前
meng完成签到,获得积分10
7秒前
徐高梁完成签到,获得积分10
7秒前
7秒前
烦人应助皇甫契采纳,获得10
7秒前
orixero应助hana采纳,获得10
7秒前
8秒前
杰尼龟发布了新的文献求助10
8秒前
高大的泥猴桃完成签到,获得积分20
8秒前
Akim应助忆枫采纳,获得10
8秒前
chenlike完成签到,获得积分10
8秒前
1365完成签到,获得积分20
8秒前
一次性过发布了新的文献求助10
9秒前
zxsv完成签到,获得积分10
9秒前
江璃发布了新的文献求助10
9秒前
zyz完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
Zoe发布了新的文献求助10
10秒前
Yuna发布了新的文献求助10
10秒前
竹焚完成签到 ,获得积分10
10秒前
米里迷路发布了新的文献求助10
11秒前
欣喜的向露完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3955056
求助须知:如何正确求助?哪些是违规求助? 3501390
关于积分的说明 11102563
捐赠科研通 3231634
什么是DOI,文献DOI怎么找? 1786494
邀请新用户注册赠送积分活动 870109
科研通“疑难数据库(出版商)”最低求助积分说明 801813