已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dual-path multi-scale context dense aggregation network for retinal vessel segmentation

计算机科学 分割 人工智能 背景(考古学) 特征(语言学) 棱锥(几何) 过度拟合 联营 模式识别(心理学) 深度学习 计算机视觉 人工神经网络 数学 语言学 生物 哲学 古生物学 几何学
作者
Wei Zhou,Weiqi Bai,Jianhang Ji,Yugen Yi,Ningyi Zhang,Wei Cui
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107269-107269 被引量:12
标识
DOI:10.1016/j.compbiomed.2023.107269
摘要

There has been steady progress in the field of deep learning-based blood vessel segmentation. However, several challenging issues still continue to limit its progress, including inadequate sample sizes, the neglect of contextual information, and the loss of microvascular details. To address these limitations, we propose a dual-path deep learning framework for blood vessel segmentation. In our framework, the fundus images are divided into concentric patches with different scales to alleviate the overfitting problem. Then, a Multi-scale Context Dense Aggregation Network (MCDAU-Net) is proposed to accurately extract the blood vessel boundaries from these patches. In MCDAU-Net, a Cascaded Dilated Spatial Pyramid Pooling (CDSPP) module is designed and incorporated into intermediate layers of the model, enhancing the receptive field and producing feature maps enriched with contextual information. To improve segmentation performance for low-contrast vessels, we propose an InceptionConv (IConv) module, which can explore deeper semantic features and suppress the propagation of non-vessel information. Furthermore, we design a Multi-scale Adaptive Feature Aggregation (MAFA) module to fuse the multi-scale feature by assigning adaptive weight coefficients to different feature maps through skip connections. Finally, to explore the complementary contextual information and enhance the continuity of microvascular structures, a fusion module is designed to combine the segmentation results obtained from patches of different sizes, achieving fine microvascular segmentation performance. In order to assess the effectiveness of our approach, we conducted evaluations on three widely-used public datasets: DRIVE, CHASE-DB1, and STARE. Our findings reveal a remarkable advancement over the current state-of-the-art (SOTA) techniques, with the mean values of Se and F1 scores being an increase of 7.9% and 4.7%, respectively. The code is available at https://github.com/bai101315/MCDAU-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力世界发布了新的文献求助10
2秒前
小汪爱学习完成签到,获得积分20
5秒前
5秒前
yangon完成签到,获得积分20
8秒前
Vce April完成签到,获得积分10
9秒前
忧虑的羊发布了新的文献求助10
10秒前
大力世界完成签到,获得积分20
12秒前
19秒前
21秒前
wangnn完成签到,获得积分10
23秒前
不甜完成签到 ,获得积分10
26秒前
追三完成签到 ,获得积分10
27秒前
万能图书馆应助allover采纳,获得10
29秒前
七草肃完成签到,获得积分10
29秒前
江小白完成签到,获得积分0
32秒前
34秒前
DChen完成签到 ,获得积分10
36秒前
嗯哼应助郑大采纳,获得20
40秒前
乐乐应助hao采纳,获得10
43秒前
小航完成签到 ,获得积分10
44秒前
45秒前
没有昵称完成签到 ,获得积分10
46秒前
58秒前
59秒前
59秒前
IIIKERUI发布了新的文献求助10
1分钟前
谨慎颜演完成签到 ,获得积分10
1分钟前
IIIKERUI完成签到,获得积分10
1分钟前
1分钟前
木沂完成签到 ,获得积分10
1分钟前
1分钟前
凝夜完成签到 ,获得积分10
1分钟前
清脆的夜云完成签到,获得积分10
1分钟前
aiiLuX完成签到 ,获得积分10
1分钟前
xujiejiuxi发布了新的文献求助10
1分钟前
Dawn完成签到 ,获得积分10
1分钟前
安琪发布了新的文献求助10
1分钟前
科研通AI2S应助GongZH采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234488
求助须知:如何正确求助?哪些是违规求助? 2880839
关于积分的说明 8217229
捐赠科研通 2548429
什么是DOI,文献DOI怎么找? 1377749
科研通“疑难数据库(出版商)”最低求助积分说明 647959
邀请新用户注册赠送积分活动 623314