Predicting gene expression changes upon epigenomic drug treatment

表观基因组 转录组 表观遗传学 生物 DNA甲基化 组蛋白脱乙酰基酶 表观遗传学 组蛋白 计算生物学 癌症研究 遗传学 基因 基因表达
作者
Piyush Agrawal,Vishaka Gopalan,Sridhar Hannenhalli
标识
DOI:10.1101/2023.07.20.549955
摘要

Abstract Background Tumors are characterized by global changes in epigenetic changes such as DNA methylation and histone modifications that are functionally linked to tumor progression. Accordingly, several drugs targeting the epigenome have been proposed for cancer therapy, notably, histone deacetylase inhibitors (HDACi) such as Vorinostatis and DNA methyltransferase inhibitors (DNMTi) such as Zebularine . However, a fundamental challenge with such approaches is the lack of genomic specificity, i.e., the transcriptional changes at different genomic loci can be highly variable thus making it difficult to predict the consequences on the global transcriptome and drug response. For instance, treatment with DNMTi may upregulate the expression of not only a tumor suppressor but also an oncogene leading to unintended adverse effect. Methods Given the pre-treatment transcriptome and epigenomic profile of a sample, we assessed the extent of predictability of locus-specific changes in gene expression upon treatment with HDACi using machine learning. Results We found that in two cell lines (HCT116 treated with Largazole at 8 doses and RH4 treated with Entinostat at 1µM) where the appropriate data (pre-treatment transcriptome and epigenome as well as post-treatment transcriptome) is available, our model distinguished the post-treatment up versus downregulated genes with high accuracy (up to ROC of 0.89). Furthermore, a model trained on one cell line is applicable to another cell line suggesting generalizability of the model. Conclusions Here we present a first assessment of the predictability of genome-wide transcriptomic changes upon treatment with HDACi. Lack of appropriate omics data from clinical trials of epigenetic drugs currently hampers the assessment of applicability of our approach in clinical setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健的小迷弟应助meng采纳,获得10
1秒前
SciGPT应助华仔采纳,获得10
2秒前
浮游应助Fantacy采纳,获得10
2秒前
结果诠释过往完成签到 ,获得积分10
3秒前
4秒前
4秒前
耳放完成签到,获得积分20
4秒前
5秒前
Messi发布了新的文献求助10
5秒前
努力努力再努力完成签到,获得积分10
6秒前
一位科研苟完成签到,获得积分10
6秒前
思源应助忧心的飞雪采纳,获得10
6秒前
6秒前
星辰大海应助紧张的毛衣采纳,获得10
7秒前
7秒前
胡天硕完成签到,获得积分10
7秒前
8秒前
我是第一名完成签到,获得积分10
8秒前
科研小子发布了新的文献求助10
8秒前
酷波er应助zz采纳,获得10
8秒前
8秒前
万能图书馆应助红油曲奇采纳,获得10
9秒前
我爱紫丁香应助江南采纳,获得30
9秒前
princess完成签到,获得积分20
9秒前
TYJ发布了新的文献求助10
9秒前
郝薇薇薇薇儿完成签到,获得积分10
10秒前
Nervous发布了新的文献求助10
10秒前
11秒前
11秒前
麦兜发布了新的文献求助10
11秒前
FashionBoy应助liuliu采纳,获得30
11秒前
11秒前
SciGPT应助were采纳,获得10
11秒前
海浪发布了新的文献求助10
11秒前
11秒前
ontheway发布了新的文献求助10
11秒前
天天快乐应助XYYX采纳,获得10
13秒前
耳放关注了科研通微信公众号
13秒前
不是省油的灯完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648206
求助须知:如何正确求助?哪些是违规求助? 4775141
关于积分的说明 15043236
捐赠科研通 4807251
什么是DOI,文献DOI怎么找? 2570608
邀请新用户注册赠送积分活动 1527392
关于科研通互助平台的介绍 1486407