Predicting gene expression changes upon epigenomic drug treatment

表观基因组 转录组 表观遗传学 生物 DNA甲基化 组蛋白脱乙酰基酶 表观遗传学 组蛋白 计算生物学 癌症研究 遗传学 基因 基因表达
作者
Piyush Agrawal,Vishaka Gopalan,Sridhar Hannenhalli
标识
DOI:10.1101/2023.07.20.549955
摘要

Abstract Background Tumors are characterized by global changes in epigenetic changes such as DNA methylation and histone modifications that are functionally linked to tumor progression. Accordingly, several drugs targeting the epigenome have been proposed for cancer therapy, notably, histone deacetylase inhibitors (HDACi) such as Vorinostatis and DNA methyltransferase inhibitors (DNMTi) such as Zebularine . However, a fundamental challenge with such approaches is the lack of genomic specificity, i.e., the transcriptional changes at different genomic loci can be highly variable thus making it difficult to predict the consequences on the global transcriptome and drug response. For instance, treatment with DNMTi may upregulate the expression of not only a tumor suppressor but also an oncogene leading to unintended adverse effect. Methods Given the pre-treatment transcriptome and epigenomic profile of a sample, we assessed the extent of predictability of locus-specific changes in gene expression upon treatment with HDACi using machine learning. Results We found that in two cell lines (HCT116 treated with Largazole at 8 doses and RH4 treated with Entinostat at 1µM) where the appropriate data (pre-treatment transcriptome and epigenome as well as post-treatment transcriptome) is available, our model distinguished the post-treatment up versus downregulated genes with high accuracy (up to ROC of 0.89). Furthermore, a model trained on one cell line is applicable to another cell line suggesting generalizability of the model. Conclusions Here we present a first assessment of the predictability of genome-wide transcriptomic changes upon treatment with HDACi. Lack of appropriate omics data from clinical trials of epigenetic drugs currently hampers the assessment of applicability of our approach in clinical setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瓜瓜瓜完成签到 ,获得积分10
1秒前
迈克老狼完成签到 ,获得积分10
8秒前
2025迷完成签到 ,获得积分10
12秒前
ycd完成签到,获得积分10
16秒前
洗衣液谢完成签到 ,获得积分10
17秒前
ypres完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
zzz完成签到,获得积分10
24秒前
静静完成签到 ,获得积分10
24秒前
neversay4ever完成签到 ,获得积分10
28秒前
gnil完成签到,获得积分10
30秒前
刘玲完成签到 ,获得积分10
35秒前
ChatGPT发布了新的文献求助10
44秒前
hi小豆完成签到 ,获得积分10
49秒前
红毛兔完成签到,获得积分10
51秒前
量子星尘发布了新的文献求助10
51秒前
wuyyuan完成签到 ,获得积分10
54秒前
小刘同学完成签到,获得积分10
56秒前
clxgene完成签到,获得积分10
58秒前
XXGG完成签到 ,获得积分10
1分钟前
kanong完成签到,获得积分0
1分钟前
star完成签到,获得积分10
1分钟前
小白加油完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高雍发布了新的文献求助10
1分钟前
1分钟前
天天开心完成签到 ,获得积分0
1分钟前
111完成签到 ,获得积分10
1分钟前
wuqs发布了新的文献求助10
1分钟前
1分钟前
久晓完成签到 ,获得积分10
1分钟前
LIJIngcan完成签到 ,获得积分10
1分钟前
笑点低的铁身完成签到 ,获得积分10
1分钟前
1分钟前
持卿应助ceeray23采纳,获得30
1分钟前
我很好完成签到 ,获得积分10
1分钟前
现代小丸子完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
gf完成签到 ,获得积分10
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584832
求助须知:如何正确求助?哪些是违规求助? 4668720
关于积分的说明 14771614
捐赠科研通 4615564
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467575