清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting gene expression changes upon epigenomic drug treatment

表观基因组 转录组 表观遗传学 生物 DNA甲基化 组蛋白脱乙酰基酶 表观遗传学 组蛋白 计算生物学 癌症研究 遗传学 基因 基因表达
作者
Piyush Agrawal,Vishaka Gopalan,Sridhar Hannenhalli
标识
DOI:10.1101/2023.07.20.549955
摘要

Abstract Background Tumors are characterized by global changes in epigenetic changes such as DNA methylation and histone modifications that are functionally linked to tumor progression. Accordingly, several drugs targeting the epigenome have been proposed for cancer therapy, notably, histone deacetylase inhibitors (HDACi) such as Vorinostatis and DNA methyltransferase inhibitors (DNMTi) such as Zebularine . However, a fundamental challenge with such approaches is the lack of genomic specificity, i.e., the transcriptional changes at different genomic loci can be highly variable thus making it difficult to predict the consequences on the global transcriptome and drug response. For instance, treatment with DNMTi may upregulate the expression of not only a tumor suppressor but also an oncogene leading to unintended adverse effect. Methods Given the pre-treatment transcriptome and epigenomic profile of a sample, we assessed the extent of predictability of locus-specific changes in gene expression upon treatment with HDACi using machine learning. Results We found that in two cell lines (HCT116 treated with Largazole at 8 doses and RH4 treated with Entinostat at 1µM) where the appropriate data (pre-treatment transcriptome and epigenome as well as post-treatment transcriptome) is available, our model distinguished the post-treatment up versus downregulated genes with high accuracy (up to ROC of 0.89). Furthermore, a model trained on one cell line is applicable to another cell line suggesting generalizability of the model. Conclusions Here we present a first assessment of the predictability of genome-wide transcriptomic changes upon treatment with HDACi. Lack of appropriate omics data from clinical trials of epigenetic drugs currently hampers the assessment of applicability of our approach in clinical setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉巧凡完成签到,获得积分10
25秒前
浮游应助lawang采纳,获得10
1分钟前
浮游应助lawang采纳,获得10
1分钟前
浮游应助lawang采纳,获得10
1分钟前
浮游应助lawang采纳,获得10
1分钟前
浮游应助lawang采纳,获得10
1分钟前
浮游应助lawang采纳,获得10
1分钟前
浮游应助lawang采纳,获得10
1分钟前
浮游应助lawang采纳,获得10
1分钟前
iNk应助lawang采纳,获得10
1分钟前
科研通AI2S应助lawang采纳,获得10
1分钟前
Akim应助lawang采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
饺子猫完成签到,获得积分10
2分钟前
2分钟前
lawang完成签到,获得积分10
2分钟前
两个榴莲完成签到,获得积分0
3分钟前
3分钟前
3分钟前
朱文韬发布了新的文献求助10
4分钟前
朱文韬完成签到,获得积分10
4分钟前
平淡卿完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
li发布了新的文献求助10
4分钟前
kasumi完成签到 ,获得积分20
4分钟前
li完成签到,获得积分10
5分钟前
krajicek完成签到,获得积分10
5分钟前
5分钟前
6分钟前
bkagyin应助当里个当采纳,获得10
7分钟前
jinger完成签到 ,获得积分10
7分钟前
7分钟前
闻巷雨完成签到 ,获得积分10
7分钟前
7分钟前
tt完成签到,获得积分10
7分钟前
当里个当发布了新的文献求助10
7分钟前
7分钟前
傅嘉庆发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681786
求助须知:如何正确求助?哪些是违规求助? 5013072
关于积分的说明 15176105
捐赠科研通 4841287
什么是DOI,文献DOI怎么找? 2595077
邀请新用户注册赠送积分活动 1548103
关于科研通互助平台的介绍 1506117