Predicting gene expression changes upon epigenomic drug treatment

表观基因组 转录组 表观遗传学 生物 DNA甲基化 组蛋白脱乙酰基酶 表观遗传学 组蛋白 计算生物学 癌症研究 遗传学 基因 基因表达
作者
Piyush Agrawal,Vishaka Gopalan,Sridhar Hannenhalli
标识
DOI:10.1101/2023.07.20.549955
摘要

Abstract Background Tumors are characterized by global changes in epigenetic changes such as DNA methylation and histone modifications that are functionally linked to tumor progression. Accordingly, several drugs targeting the epigenome have been proposed for cancer therapy, notably, histone deacetylase inhibitors (HDACi) such as Vorinostatis and DNA methyltransferase inhibitors (DNMTi) such as Zebularine . However, a fundamental challenge with such approaches is the lack of genomic specificity, i.e., the transcriptional changes at different genomic loci can be highly variable thus making it difficult to predict the consequences on the global transcriptome and drug response. For instance, treatment with DNMTi may upregulate the expression of not only a tumor suppressor but also an oncogene leading to unintended adverse effect. Methods Given the pre-treatment transcriptome and epigenomic profile of a sample, we assessed the extent of predictability of locus-specific changes in gene expression upon treatment with HDACi using machine learning. Results We found that in two cell lines (HCT116 treated with Largazole at 8 doses and RH4 treated with Entinostat at 1µM) where the appropriate data (pre-treatment transcriptome and epigenome as well as post-treatment transcriptome) is available, our model distinguished the post-treatment up versus downregulated genes with high accuracy (up to ROC of 0.89). Furthermore, a model trained on one cell line is applicable to another cell line suggesting generalizability of the model. Conclusions Here we present a first assessment of the predictability of genome-wide transcriptomic changes upon treatment with HDACi. Lack of appropriate omics data from clinical trials of epigenetic drugs currently hampers the assessment of applicability of our approach in clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
机智依丝发布了新的文献求助10
刚刚
123完成签到,获得积分20
刚刚
Lucas应助wenjing采纳,获得20
刚刚
思维隋发布了新的文献求助30
1秒前
wanci应助Beatrice采纳,获得10
1秒前
Donaldwang完成签到,获得积分20
1秒前
小白发布了新的文献求助10
2秒前
2秒前
万能图书馆应助刘二炮采纳,获得10
2秒前
2秒前
2秒前
3秒前
zzx发布了新的文献求助10
4秒前
李健应助petrichor采纳,获得10
4秒前
华志文发布了新的文献求助10
4秒前
annaanna发布了新的文献求助10
4秒前
打打应助xd采纳,获得10
4秒前
5秒前
动听的柚子完成签到,获得积分10
5秒前
Vintoe发布了新的文献求助10
5秒前
学术垃圾12138完成签到,获得积分10
5秒前
6秒前
乙酰胆碱发布了新的文献求助10
6秒前
6秒前
万能图书馆应助笙黎采纳,获得10
6秒前
DR_ZHANG发布了新的文献求助10
6秒前
6秒前
czz014发布了新的文献求助10
7秒前
FashionBoy应助mm采纳,获得10
7秒前
发货后完成签到,获得积分10
8秒前
8秒前
李健的小迷弟应助zhu采纳,获得10
9秒前
anki发布了新的文献求助10
9秒前
麻瓜完成签到,获得积分10
9秒前
9秒前
哈哈发布了新的文献求助10
9秒前
幸福的冰珍完成签到,获得积分10
10秒前
果果完成签到,获得积分10
11秒前
爱笑冰海完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260333
求助须知:如何正确求助?哪些是违规求助? 4421812
关于积分的说明 13764321
捐赠科研通 4295995
什么是DOI,文献DOI怎么找? 2357141
邀请新用户注册赠送积分活动 1353475
关于科研通互助平台的介绍 1314745