Predicting gene expression changes upon epigenomic drug treatment

表观基因组 转录组 表观遗传学 生物 DNA甲基化 组蛋白脱乙酰基酶 表观遗传学 组蛋白 计算生物学 癌症研究 遗传学 基因 基因表达
作者
Piyush Agrawal,Vishaka Gopalan,Sridhar Hannenhalli
标识
DOI:10.1101/2023.07.20.549955
摘要

Abstract Background Tumors are characterized by global changes in epigenetic changes such as DNA methylation and histone modifications that are functionally linked to tumor progression. Accordingly, several drugs targeting the epigenome have been proposed for cancer therapy, notably, histone deacetylase inhibitors (HDACi) such as Vorinostatis and DNA methyltransferase inhibitors (DNMTi) such as Zebularine . However, a fundamental challenge with such approaches is the lack of genomic specificity, i.e., the transcriptional changes at different genomic loci can be highly variable thus making it difficult to predict the consequences on the global transcriptome and drug response. For instance, treatment with DNMTi may upregulate the expression of not only a tumor suppressor but also an oncogene leading to unintended adverse effect. Methods Given the pre-treatment transcriptome and epigenomic profile of a sample, we assessed the extent of predictability of locus-specific changes in gene expression upon treatment with HDACi using machine learning. Results We found that in two cell lines (HCT116 treated with Largazole at 8 doses and RH4 treated with Entinostat at 1µM) where the appropriate data (pre-treatment transcriptome and epigenome as well as post-treatment transcriptome) is available, our model distinguished the post-treatment up versus downregulated genes with high accuracy (up to ROC of 0.89). Furthermore, a model trained on one cell line is applicable to another cell line suggesting generalizability of the model. Conclusions Here we present a first assessment of the predictability of genome-wide transcriptomic changes upon treatment with HDACi. Lack of appropriate omics data from clinical trials of epigenetic drugs currently hampers the assessment of applicability of our approach in clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanguowusheng完成签到 ,获得积分10
刚刚
刚刚
1秒前
liuke完成签到,获得积分10
2秒前
共享精神应助12138采纳,获得30
2秒前
2秒前
2秒前
李健应助a成采纳,获得10
2秒前
粗暴的海豚完成签到,获得积分10
2秒前
tramp应助康凯采纳,获得10
3秒前
怕孤单的思雁完成签到,获得积分10
3秒前
4秒前
毛毛虫发布了新的文献求助10
4秒前
4秒前
青蛙呱呱发布了新的文献求助10
4秒前
5秒前
5秒前
大胆的书白完成签到,获得积分10
6秒前
有魅力荟给有魅力荟的求助进行了留言
6秒前
6秒前
嗯哼应助ylky采纳,获得20
6秒前
6秒前
6秒前
1223完成签到,获得积分10
6秒前
Ranch0完成签到,获得积分10
6秒前
7秒前
8秒前
Yey完成签到 ,获得积分10
8秒前
个性的语山完成签到,获得积分10
8秒前
9秒前
orixero应助大白采纳,获得10
9秒前
苹果飞绿完成签到,获得积分10
10秒前
拉布拉卡发布了新的文献求助10
11秒前
12秒前
鑫鑫努力学习完成签到,获得积分10
13秒前
13秒前
14秒前
JamesPei应助贤惠的面包采纳,获得10
14秒前
松松完成签到 ,获得积分10
15秒前
fangfang发布了新的文献求助30
15秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159344
求助须知:如何正确求助?哪些是违规求助? 2810413
关于积分的说明 7887812
捐赠科研通 2469306
什么是DOI,文献DOI怎么找? 1314746
科研通“疑难数据库(出版商)”最低求助积分说明 630710
版权声明 602012