Predicting gene expression changes upon epigenomic drug treatment

表观基因组 转录组 表观遗传学 生物 DNA甲基化 组蛋白脱乙酰基酶 表观遗传学 组蛋白 计算生物学 癌症研究 遗传学 基因 基因表达
作者
Piyush Agrawal,Vishaka Gopalan,Sridhar Hannenhalli
标识
DOI:10.1101/2023.07.20.549955
摘要

Abstract Background Tumors are characterized by global changes in epigenetic changes such as DNA methylation and histone modifications that are functionally linked to tumor progression. Accordingly, several drugs targeting the epigenome have been proposed for cancer therapy, notably, histone deacetylase inhibitors (HDACi) such as Vorinostatis and DNA methyltransferase inhibitors (DNMTi) such as Zebularine . However, a fundamental challenge with such approaches is the lack of genomic specificity, i.e., the transcriptional changes at different genomic loci can be highly variable thus making it difficult to predict the consequences on the global transcriptome and drug response. For instance, treatment with DNMTi may upregulate the expression of not only a tumor suppressor but also an oncogene leading to unintended adverse effect. Methods Given the pre-treatment transcriptome and epigenomic profile of a sample, we assessed the extent of predictability of locus-specific changes in gene expression upon treatment with HDACi using machine learning. Results We found that in two cell lines (HCT116 treated with Largazole at 8 doses and RH4 treated with Entinostat at 1µM) where the appropriate data (pre-treatment transcriptome and epigenome as well as post-treatment transcriptome) is available, our model distinguished the post-treatment up versus downregulated genes with high accuracy (up to ROC of 0.89). Furthermore, a model trained on one cell line is applicable to another cell line suggesting generalizability of the model. Conclusions Here we present a first assessment of the predictability of genome-wide transcriptomic changes upon treatment with HDACi. Lack of appropriate omics data from clinical trials of epigenetic drugs currently hampers the assessment of applicability of our approach in clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
peiyy完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
严锦强完成签到,获得积分10
2秒前
Accept完成签到,获得积分10
2秒前
orixero应助LYY采纳,获得10
2秒前
咎星完成签到,获得积分10
2秒前
2秒前
领导范儿应助wood采纳,获得10
2秒前
3秒前
Qinqinasm完成签到,获得积分10
3秒前
Little2发布了新的文献求助10
4秒前
彭于晏应助TaoJ采纳,获得10
4秒前
yiqifan完成签到,获得积分10
4秒前
Longfenzhong发布了新的文献求助10
4秒前
卡拉米发布了新的文献求助10
4秒前
Vyasa完成签到,获得积分10
4秒前
津津乐道完成签到,获得积分10
5秒前
5秒前
杨羽发布了新的文献求助10
7秒前
ohno耶耶耶完成签到,获得积分10
7秒前
优雅的WAN完成签到 ,获得积分10
7秒前
苏雅霏发布了新的文献求助10
7秒前
8秒前
yelide发布了新的文献求助10
9秒前
Xiaoxiannv完成签到,获得积分10
9秒前
英俊的铭应助yuer采纳,获得10
9秒前
sunsunsun完成签到,获得积分10
9秒前
9秒前
海盐气泡水完成签到,获得积分10
9秒前
柯一一应助Han采纳,获得10
10秒前
CatC发布了新的文献求助10
10秒前
windcreator完成签到,获得积分10
10秒前
早点睡吧完成签到,获得积分10
10秒前
10秒前
不见高山完成签到,获得积分10
11秒前
义气语儿完成签到,获得积分10
13秒前
funny完成签到,获得积分10
13秒前
活泼洙完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960377
求助须知:如何正确求助?哪些是违规求助? 3506460
关于积分的说明 11130713
捐赠科研通 3238673
什么是DOI,文献DOI怎么找? 1789847
邀请新用户注册赠送积分活动 871964
科研通“疑难数据库(出版商)”最低求助积分说明 803099