Predicting gene expression changes upon epigenomic drug treatment

表观基因组 转录组 表观遗传学 生物 DNA甲基化 组蛋白脱乙酰基酶 表观遗传学 组蛋白 计算生物学 癌症研究 遗传学 基因 基因表达
作者
Piyush Agrawal,Vishaka Gopalan,Sridhar Hannenhalli
标识
DOI:10.1101/2023.07.20.549955
摘要

Abstract Background Tumors are characterized by global changes in epigenetic changes such as DNA methylation and histone modifications that are functionally linked to tumor progression. Accordingly, several drugs targeting the epigenome have been proposed for cancer therapy, notably, histone deacetylase inhibitors (HDACi) such as Vorinostatis and DNA methyltransferase inhibitors (DNMTi) such as Zebularine . However, a fundamental challenge with such approaches is the lack of genomic specificity, i.e., the transcriptional changes at different genomic loci can be highly variable thus making it difficult to predict the consequences on the global transcriptome and drug response. For instance, treatment with DNMTi may upregulate the expression of not only a tumor suppressor but also an oncogene leading to unintended adverse effect. Methods Given the pre-treatment transcriptome and epigenomic profile of a sample, we assessed the extent of predictability of locus-specific changes in gene expression upon treatment with HDACi using machine learning. Results We found that in two cell lines (HCT116 treated with Largazole at 8 doses and RH4 treated with Entinostat at 1µM) where the appropriate data (pre-treatment transcriptome and epigenome as well as post-treatment transcriptome) is available, our model distinguished the post-treatment up versus downregulated genes with high accuracy (up to ROC of 0.89). Furthermore, a model trained on one cell line is applicable to another cell line suggesting generalizability of the model. Conclusions Here we present a first assessment of the predictability of genome-wide transcriptomic changes upon treatment with HDACi. Lack of appropriate omics data from clinical trials of epigenetic drugs currently hampers the assessment of applicability of our approach in clinical setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高贵的傲云完成签到,获得积分20
刚刚
xqy发布了新的文献求助10
刚刚
Juyi发布了新的文献求助10
刚刚
1秒前
puuuunido完成签到 ,获得积分10
2秒前
2秒前
2秒前
wanci应助大川采纳,获得10
2秒前
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
6秒前
6秒前
6秒前
丘比特应助孙萌萌采纳,获得10
7秒前
滴滴滴发布了新的文献求助10
7秒前
中国大陆发布了新的文献求助10
8秒前
8秒前
万能图书馆应助朱彤彤采纳,获得10
9秒前
9秒前
小葱麦桃发布了新的文献求助10
9秒前
9秒前
10秒前
英俊的铭应助幽默的南霜采纳,获得10
10秒前
Hello应助谦让小松鼠采纳,获得10
10秒前
代沁发布了新的文献求助10
10秒前
求助人员发布了新的文献求助50
11秒前
Jasper应助酷酷的妙柏采纳,获得10
11秒前
Y_发布了新的文献求助10
12秒前
国启发布了新的文献求助10
12秒前
风趣蜡烛完成签到 ,获得积分10
12秒前
Harlotte完成签到 ,获得积分10
13秒前
spc68应助淡然半雪采纳,获得10
13秒前
13秒前
MX120251336发布了新的文献求助10
13秒前
Twonej应助拼搏羽毛采纳,获得50
13秒前
中国大陆完成签到,获得积分20
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721324
求助须知:如何正确求助?哪些是违规求助? 5265309
关于积分的说明 15293874
捐赠科研通 4870668
什么是DOI,文献DOI怎么找? 2615594
邀请新用户注册赠送积分活动 1565373
关于科研通互助平台的介绍 1522430