Automating Mushroom Culture Classification: A Machine Learning Approach

蘑菇 人工智能 计算机科学 机器学习 自然语言处理 生物 植物
作者
Hamimah Ujir,Irwandi Hipiny,Mohamad Hasnul Bolhassan,Ku Nurul Fazira Ku Azir,SA Ali
出处
期刊:International Journal of Advanced Computer Science and Applications [The Science and Information Organization]
卷期号:15 (4)
标识
DOI:10.14569/ijacsa.2024.0150454
摘要

Traditionally, the classification of mushroom cultures has conventionally relied on manual inspection by human experts. However, this methodology is susceptible to human bias and errors, primarily due to its dependency on individual judgments. To overcome these limitations, we introduce an innovative approach that harnesses machine learning methodologies to automate the classification of mushroom cultures. Our methodology employs two distinct strategies: the first involves utilizing the histogram profile of the HSV color space, while the second employs a convolutional neural network (CNN)-based technique. We evaluated a dataset of 1400 images from two strains of Pleurotus ostreatus mycelium samples over a period of 14 days. During the cultivation phase, we base our operations on the histogram profiles of the masked areas. The application of the HSV histogram profile led to an average precision of 74.6% for phase 2, with phase 3 yielding a higher precision of 95.2%. For CNN-based method, the discriminative image features are extracted from captured images of rhizomorph mycelium growth. These features are then used to train a machine learning model that can accurately estimate the growth rate of a rhizomorph mycelium culture and predict contamination status. Using MNet and MConNet approach, our results achieved an average accuracy of 92.15% for growth prediction and 97.81% for contamination prediction. Our results suggest that computer-based approaches could revolutionize the mushroom cultivation industry by making it more efficient and productive. Our approach is less prone to human error than manual inspection, and it can be used to produce mushrooms more efficiently and with higher quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
偷星完成签到,获得积分10
1秒前
科研通AI6应助hh采纳,获得10
2秒前
3秒前
3秒前
4秒前
4秒前
壮观听白完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
123完成签到,获得积分10
5秒前
zty完成签到,获得积分10
5秒前
priscilla完成签到,获得积分10
6秒前
dfi发布了新的文献求助10
8秒前
实验员发布了新的文献求助10
8秒前
77完成签到,获得积分10
12秒前
搜集达人应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
13秒前
浮游应助科研通管家采纳,获得10
13秒前
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
小小应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
嘿嘿应助科研通管家采纳,获得10
13秒前
邓佳鑫Alan应助科研通管家采纳,获得10
13秒前
14秒前
浮游应助科研通管家采纳,获得10
14秒前
邓佳鑫Alan应助科研通管家采纳,获得10
14秒前
邓佳鑫Alan应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
邓佳鑫Alan应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
邓佳鑫Alan应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
邓佳鑫Alan应助科研通管家采纳,获得10
14秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457641
求助须知:如何正确求助?哪些是违规求助? 4563953
关于积分的说明 14292698
捐赠科研通 4488688
什么是DOI,文献DOI怎么找? 2458671
邀请新用户注册赠送积分活动 1448647
关于科研通互助平台的介绍 1424343