Automating Mushroom Culture Classification: A Machine Learning Approach

蘑菇 人工智能 计算机科学 机器学习 自然语言处理 生物 植物
作者
Hamimah Ujir,Irwandi Hipiny,Mohamad Hasnul Bolhassan,Ku Nurul Fazira Ku Azir,SA Ali
出处
期刊:International Journal of Advanced Computer Science and Applications [The Science and Information Organization]
卷期号:15 (4)
标识
DOI:10.14569/ijacsa.2024.0150454
摘要

Traditionally, the classification of mushroom cultures has conventionally relied on manual inspection by human experts. However, this methodology is susceptible to human bias and errors, primarily due to its dependency on individual judgments. To overcome these limitations, we introduce an innovative approach that harnesses machine learning methodologies to automate the classification of mushroom cultures. Our methodology employs two distinct strategies: the first involves utilizing the histogram profile of the HSV color space, while the second employs a convolutional neural network (CNN)-based technique. We evaluated a dataset of 1400 images from two strains of Pleurotus ostreatus mycelium samples over a period of 14 days. During the cultivation phase, we base our operations on the histogram profiles of the masked areas. The application of the HSV histogram profile led to an average precision of 74.6% for phase 2, with phase 3 yielding a higher precision of 95.2%. For CNN-based method, the discriminative image features are extracted from captured images of rhizomorph mycelium growth. These features are then used to train a machine learning model that can accurately estimate the growth rate of a rhizomorph mycelium culture and predict contamination status. Using MNet and MConNet approach, our results achieved an average accuracy of 92.15% for growth prediction and 97.81% for contamination prediction. Our results suggest that computer-based approaches could revolutionize the mushroom cultivation industry by making it more efficient and productive. Our approach is less prone to human error than manual inspection, and it can be used to produce mushrooms more efficiently and with higher quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘文鑫发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
CipherSage应助基尼胎没采纳,获得10
3秒前
打打应助RKTTKT采纳,获得10
4秒前
熊旺林完成签到,获得积分10
4秒前
whh完成签到,获得积分20
4秒前
芳蔼完成签到 ,获得积分20
4秒前
英姑应助滴滴答答采纳,获得10
5秒前
薛人英完成签到,获得积分10
5秒前
5秒前
5秒前
Yankai完成签到,获得积分10
6秒前
青春完成签到 ,获得积分10
6秒前
linxunxiazhi完成签到,获得积分10
7秒前
dylannnn发布了新的文献求助10
7秒前
乐乐应助qiqi1111采纳,获得10
7秒前
邹佳林完成签到,获得积分10
7秒前
7秒前
SciGPT应助聪明的宛菡采纳,获得10
7秒前
七七完成签到,获得积分10
7秒前
7秒前
一川烟叶完成签到,获得积分10
7秒前
7秒前
跳跃的戒指完成签到,获得积分20
8秒前
Yjh完成签到,获得积分10
8秒前
所所应助chivu1980采纳,获得10
8秒前
8秒前
poison发布了新的文献求助10
8秒前
siyuan完成签到,获得积分20
9秒前
积极访卉完成签到,获得积分10
9秒前
9秒前
9秒前
玛卡巴卡完成签到,获得积分10
9秒前
搜集达人应助小陈采纳,获得10
9秒前
10秒前
10秒前
潇洒的竹杖应助慧慧子采纳,获得20
11秒前
欢喜板凳发布了新的文献求助10
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5348684
求助须知:如何正确求助?哪些是违规求助? 4482689
关于积分的说明 13952502
捐赠科研通 4381558
什么是DOI,文献DOI怎么找? 2407415
邀请新用户注册赠送积分活动 1400065
关于科研通互助平台的介绍 1373295