Automating Mushroom Culture Classification: A Machine Learning Approach

蘑菇 人工智能 计算机科学 机器学习 自然语言处理 生物 植物
作者
Hamimah Ujir,Irwandi Hipiny,Mohamad Hasnul Bolhassan,Ku Nurul Fazira Ku Azir,SA Ali
出处
期刊:International Journal of Advanced Computer Science and Applications [Science and Information Organization]
卷期号:15 (4)
标识
DOI:10.14569/ijacsa.2024.0150454
摘要

Traditionally, the classification of mushroom cultures has conventionally relied on manual inspection by human experts. However, this methodology is susceptible to human bias and errors, primarily due to its dependency on individual judgments. To overcome these limitations, we introduce an innovative approach that harnesses machine learning methodologies to automate the classification of mushroom cultures. Our methodology employs two distinct strategies: the first involves utilizing the histogram profile of the HSV color space, while the second employs a convolutional neural network (CNN)-based technique. We evaluated a dataset of 1400 images from two strains of Pleurotus ostreatus mycelium samples over a period of 14 days. During the cultivation phase, we base our operations on the histogram profiles of the masked areas. The application of the HSV histogram profile led to an average precision of 74.6% for phase 2, with phase 3 yielding a higher precision of 95.2%. For CNN-based method, the discriminative image features are extracted from captured images of rhizomorph mycelium growth. These features are then used to train a machine learning model that can accurately estimate the growth rate of a rhizomorph mycelium culture and predict contamination status. Using MNet and MConNet approach, our results achieved an average accuracy of 92.15% for growth prediction and 97.81% for contamination prediction. Our results suggest that computer-based approaches could revolutionize the mushroom cultivation industry by making it more efficient and productive. Our approach is less prone to human error than manual inspection, and it can be used to produce mushrooms more efficiently and with higher quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
KEMUER2发布了新的文献求助10
2秒前
qvB发布了新的文献求助10
2秒前
阳子发布了新的文献求助10
2秒前
4秒前
铜锣烧发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
白白不读书完成签到 ,获得积分10
6秒前
核桃核桃完成签到,获得积分10
7秒前
7秒前
大气早晨发布了新的文献求助10
8秒前
9秒前
ink发布了新的文献求助30
9秒前
爱吃香菜发布了新的文献求助10
9秒前
daisies举报LIN求助涉嫌违规
10秒前
Flipped发布了新的文献求助10
10秒前
wwwww驳回了ding应助
10秒前
学术发布了新的文献求助10
10秒前
10秒前
EBA发布了新的文献求助10
11秒前
11秒前
HDD发布了新的文献求助10
12秒前
铜锣烧完成签到,获得积分10
13秒前
13秒前
你猜完成签到,获得积分10
13秒前
隐形曼青应助猪猪hero采纳,获得10
13秒前
十一号发布了新的文献求助10
14秒前
英勇的笑南完成签到,获得积分20
14秒前
喵喵发布了新的文献求助20
14秒前
小萝卜完成签到,获得积分10
14秒前
14秒前
满天星的光完成签到,获得积分10
16秒前
16秒前
17秒前
jeesy发布了新的文献求助10
17秒前
领导范儿应助呆呆要努力采纳,获得10
17秒前
sci完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4608665
求助须知:如何正确求助?哪些是违规求助? 4015152
关于积分的说明 12432228
捐赠科研通 3696386
什么是DOI,文献DOI怎么找? 2037989
邀请新用户注册赠送积分活动 1071068
科研通“疑难数据库(出版商)”最低求助积分说明 954975