Automating Mushroom Culture Classification: A Machine Learning Approach

蘑菇 人工智能 计算机科学 机器学习 自然语言处理 生物 植物
作者
Hamimah Ujir,Irwandi Hipiny,Mohamad Hasnul Bolhassan,Ku Nurul Fazira Ku Azir,SA Ali
出处
期刊:International Journal of Advanced Computer Science and Applications [The Science and Information Organization]
卷期号:15 (4)
标识
DOI:10.14569/ijacsa.2024.0150454
摘要

Traditionally, the classification of mushroom cultures has conventionally relied on manual inspection by human experts. However, this methodology is susceptible to human bias and errors, primarily due to its dependency on individual judgments. To overcome these limitations, we introduce an innovative approach that harnesses machine learning methodologies to automate the classification of mushroom cultures. Our methodology employs two distinct strategies: the first involves utilizing the histogram profile of the HSV color space, while the second employs a convolutional neural network (CNN)-based technique. We evaluated a dataset of 1400 images from two strains of Pleurotus ostreatus mycelium samples over a period of 14 days. During the cultivation phase, we base our operations on the histogram profiles of the masked areas. The application of the HSV histogram profile led to an average precision of 74.6% for phase 2, with phase 3 yielding a higher precision of 95.2%. For CNN-based method, the discriminative image features are extracted from captured images of rhizomorph mycelium growth. These features are then used to train a machine learning model that can accurately estimate the growth rate of a rhizomorph mycelium culture and predict contamination status. Using MNet and MConNet approach, our results achieved an average accuracy of 92.15% for growth prediction and 97.81% for contamination prediction. Our results suggest that computer-based approaches could revolutionize the mushroom cultivation industry by making it more efficient and productive. Our approach is less prone to human error than manual inspection, and it can be used to produce mushrooms more efficiently and with higher quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子完成签到 ,获得积分10
刚刚
Orange应助pamela采纳,获得10
5秒前
搞份炸鸡778完成签到,获得积分10
6秒前
6秒前
之道应助英俊牛排采纳,获得10
9秒前
外向语山发布了新的文献求助10
11秒前
pamela完成签到,获得积分10
14秒前
烟花应助李欢采纳,获得30
16秒前
16秒前
17秒前
18秒前
不吃香菜完成签到,获得积分10
21秒前
pamela发布了新的文献求助10
22秒前
excellent_shit完成签到 ,获得积分10
22秒前
龙超人发布了新的文献求助10
24秒前
25秒前
26秒前
26秒前
GT完成签到,获得积分10
26秒前
李欢发布了新的文献求助30
28秒前
胖虎爱睡觉完成签到,获得积分10
29秒前
30秒前
可爱大米发布了新的文献求助10
30秒前
Jenny发布了新的文献求助10
31秒前
astr发布了新的文献求助10
33秒前
爱的魔力转圈圈完成签到,获得积分10
33秒前
37秒前
志不在科研完成签到,获得积分0
40秒前
孤独的觅夏完成签到,获得积分10
40秒前
42秒前
勤劳的小蜜蜂完成签到 ,获得积分10
44秒前
桐桐应助含蓄的冷松采纳,获得10
45秒前
从容芮应助外向语山采纳,获得10
47秒前
47秒前
动听的千兰完成签到,获得积分10
51秒前
52秒前
今何在发布了新的文献求助10
53秒前
Rui完成签到,获得积分10
55秒前
ewind完成签到 ,获得积分10
57秒前
秋秋发布了新的文献求助10
57秒前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1200
Effect of CPAP therapy on BP in patients with OSA a worldwide individual patient data meta-analysis 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3365834
求助须知:如何正确求助?哪些是违规求助? 2986048
关于积分的说明 8721413
捐赠科研通 2668700
什么是DOI,文献DOI怎么找? 1461433
科研通“疑难数据库(出版商)”最低求助积分说明 676308
邀请新用户注册赠送积分活动 667725