Automating Mushroom Culture Classification: A Machine Learning Approach

蘑菇 人工智能 计算机科学 机器学习 自然语言处理 生物 植物
作者
Hamimah Ujir,Irwandi Hipiny,Mohamad Hasnul Bolhassan,Ku Nurul Fazira Ku Azir,SA Ali
出处
期刊:International Journal of Advanced Computer Science and Applications [Science and Information Organization]
卷期号:15 (4)
标识
DOI:10.14569/ijacsa.2024.0150454
摘要

Traditionally, the classification of mushroom cultures has conventionally relied on manual inspection by human experts. However, this methodology is susceptible to human bias and errors, primarily due to its dependency on individual judgments. To overcome these limitations, we introduce an innovative approach that harnesses machine learning methodologies to automate the classification of mushroom cultures. Our methodology employs two distinct strategies: the first involves utilizing the histogram profile of the HSV color space, while the second employs a convolutional neural network (CNN)-based technique. We evaluated a dataset of 1400 images from two strains of Pleurotus ostreatus mycelium samples over a period of 14 days. During the cultivation phase, we base our operations on the histogram profiles of the masked areas. The application of the HSV histogram profile led to an average precision of 74.6% for phase 2, with phase 3 yielding a higher precision of 95.2%. For CNN-based method, the discriminative image features are extracted from captured images of rhizomorph mycelium growth. These features are then used to train a machine learning model that can accurately estimate the growth rate of a rhizomorph mycelium culture and predict contamination status. Using MNet and MConNet approach, our results achieved an average accuracy of 92.15% for growth prediction and 97.81% for contamination prediction. Our results suggest that computer-based approaches could revolutionize the mushroom cultivation industry by making it more efficient and productive. Our approach is less prone to human error than manual inspection, and it can be used to produce mushrooms more efficiently and with higher quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cencen发布了新的文献求助10
1秒前
sss发布了新的文献求助10
2秒前
2秒前
上官枫完成签到 ,获得积分10
2秒前
Akim应助aaa采纳,获得10
2秒前
淡水痕给淡水痕的求助进行了留言
2秒前
miemiemie完成签到 ,获得积分10
2秒前
adair关注了科研通微信公众号
2秒前
hunter完成签到,获得积分10
4秒前
呆熊发布了新的文献求助10
4秒前
我是老大应助BW打工仔采纳,获得10
4秒前
skye完成签到,获得积分10
4秒前
4秒前
领导范儿应助C5b6789n采纳,获得10
4秒前
善学以致用应助现代rong采纳,获得10
4秒前
原来完成签到 ,获得积分20
5秒前
穿西装的小卡完成签到 ,获得积分10
5秒前
ZJX完成签到,获得积分10
5秒前
SZH发布了新的文献求助10
5秒前
传奇3应助绯月采纳,获得10
5秒前
梦呓完成签到,获得积分10
6秒前
6秒前
6秒前
Fjun发布了新的文献求助10
6秒前
6秒前
研友_892kOL完成签到,获得积分10
7秒前
小喵不上课完成签到,获得积分10
7秒前
优雅的碧灵完成签到,获得积分10
7秒前
ChenLong发布了新的文献求助10
7秒前
小小的梦想完成签到 ,获得积分10
7秒前
HJJHJH应助暴躁的之卉采纳,获得10
7秒前
科研通AI2S应助淡淡猕猴桃采纳,获得10
8秒前
且喜完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
10秒前
whddue完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5189614
求助须知:如何正确求助?哪些是违规求助? 4373694
关于积分的说明 13617613
捐赠科研通 4227255
什么是DOI,文献DOI怎么找? 2318586
邀请新用户注册赠送积分活动 1317262
关于科研通互助平台的介绍 1267184