Automating Mushroom Culture Classification: A Machine Learning Approach

蘑菇 人工智能 计算机科学 机器学习 自然语言处理 生物 植物
作者
Hamimah Ujir,Irwandi Hipiny,Mohamad Hasnul Bolhassan,Ku Nurul Fazira Ku Azir,SA Ali
出处
期刊:International Journal of Advanced Computer Science and Applications [Science and Information Organization]
卷期号:15 (4)
标识
DOI:10.14569/ijacsa.2024.0150454
摘要

Traditionally, the classification of mushroom cultures has conventionally relied on manual inspection by human experts. However, this methodology is susceptible to human bias and errors, primarily due to its dependency on individual judgments. To overcome these limitations, we introduce an innovative approach that harnesses machine learning methodologies to automate the classification of mushroom cultures. Our methodology employs two distinct strategies: the first involves utilizing the histogram profile of the HSV color space, while the second employs a convolutional neural network (CNN)-based technique. We evaluated a dataset of 1400 images from two strains of Pleurotus ostreatus mycelium samples over a period of 14 days. During the cultivation phase, we base our operations on the histogram profiles of the masked areas. The application of the HSV histogram profile led to an average precision of 74.6% for phase 2, with phase 3 yielding a higher precision of 95.2%. For CNN-based method, the discriminative image features are extracted from captured images of rhizomorph mycelium growth. These features are then used to train a machine learning model that can accurately estimate the growth rate of a rhizomorph mycelium culture and predict contamination status. Using MNet and MConNet approach, our results achieved an average accuracy of 92.15% for growth prediction and 97.81% for contamination prediction. Our results suggest that computer-based approaches could revolutionize the mushroom cultivation industry by making it more efficient and productive. Our approach is less prone to human error than manual inspection, and it can be used to produce mushrooms more efficiently and with higher quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Superg发布了新的文献求助10
刚刚
LDDD发布了新的文献求助10
刚刚
酷波er应助阳光以南采纳,获得10
刚刚
小酥饼完成签到,获得积分10
1秒前
唐水之发布了新的文献求助10
1秒前
善良身影完成签到,获得积分10
2秒前
不回首发布了新的文献求助10
2秒前
3秒前
浮雨微清完成签到,获得积分10
3秒前
水煮牛肉完成签到,获得积分10
4秒前
asdasd完成签到 ,获得积分10
4秒前
所所应助Elec采纳,获得10
4秒前
4秒前
zhangyujin完成签到,获得积分10
4秒前
冷水发布了新的文献求助10
4秒前
5秒前
烟花应助eric采纳,获得30
5秒前
6秒前
顾矜应助光亮灯泡采纳,获得10
6秒前
伟川周完成签到 ,获得积分10
6秒前
贺丞完成签到,获得积分10
6秒前
淡淡友瑶完成签到,获得积分10
7秒前
开心青旋完成签到,获得积分10
8秒前
糟糕的冷雪完成签到,获得积分10
8秒前
fafa完成签到 ,获得积分10
8秒前
xxlbp发布了新的文献求助10
8秒前
科研通AI2S应助长情琦采纳,获得10
8秒前
小怪兽完成签到,获得积分10
8秒前
激昂的寒荷完成签到,获得积分10
9秒前
fengha关注了科研通微信公众号
9秒前
劣根发布了新的文献求助10
10秒前
小玉发布了新的文献求助10
11秒前
娇气的笑蓝完成签到,获得积分10
11秒前
11秒前
TT完成签到 ,获得积分10
11秒前
12秒前
微笑襄完成签到 ,获得积分10
12秒前
开心黑夜完成签到,获得积分20
13秒前
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950265
求助须知:如何正确求助?哪些是违规求助? 3495724
关于积分的说明 11078490
捐赠科研通 3226143
什么是DOI,文献DOI怎么找? 1783626
邀请新用户注册赠送积分活动 867725
科研通“疑难数据库(出版商)”最低求助积分说明 800904