Software vulnerability detection method based on code attribute graph presentation and Bi-LSTM neural network extraction

计算机科学 脆弱性(计算) 介绍(产科) 人工神经网络 编码(集合论) 软件 图形 人工智能 脆弱性评估 萃取(化学) 数据挖掘 模式识别(心理学) 理论计算机科学 程序设计语言 计算机安全 医学 放射科 心理弹性 集合(抽象数据类型) 化学 心理治疗师 色谱法 心理学
作者
Hanqing Jiang,Shaopei Ji,Chengchao Zha,Yanhong Liu
标识
DOI:10.1117/12.3032032
摘要

Nowadays, the scale of software is getting larger and more complex. The forms of vulnerability also tend to be more diversified. Traditional vulnerability detection methods have the disadvantages of high manual participation and weak ability to detect unknown vulnerabilities. It can no longer meet the detection requirements of diversified vulnerabilities. In order to improve the detection effect of unknown vulnerabilities, A large number of machine learning methods have been applied to the field of software vulnerability detection. Because the existing methods have high loss of syntax and semantic information in the process of code representation, Lead to high false alarm rate and false alarm rate. To solve this problem, this paper presents a software vulnerability detection method based on code attribute graph and Bi-LSTM (Long Short-Term Memory), in which abstract syntax tree sequence and control flow graph sequence are extracted from the code attribute graph of function, Reduce the loss of information in the process of code representation, Bi-LSTM is selected to build a feature extraction model, Experimental results show that, compared with the method based on abstract syntax tree, this method can greatly improve the accuracy and recall of vulnerability detection, improve the vulnerability detection effect for real data sets mixed with multiple software source codes, and effectively reduce the false positive rate and false negative rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三三三木发布了新的文献求助10
1秒前
幼儿园老大完成签到,获得积分10
1秒前
番茄炒蛋发布了新的文献求助10
1秒前
2秒前
ooohllfy发布了新的文献求助30
2秒前
王超超完成签到,获得积分10
3秒前
丘比特应助明亮无颜采纳,获得10
3秒前
LYY完成签到 ,获得积分10
4秒前
wanci应助石头采纳,获得10
4秒前
Aurora完成签到 ,获得积分10
4秒前
CipherSage应助ggbaby采纳,获得30
4秒前
5秒前
5秒前
大模型应助雪白的雪旋采纳,获得10
7秒前
llllffff发布了新的文献求助10
7秒前
邓佳鑫Alan应助zhang采纳,获得10
8秒前
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
heavenhorse应助科研通管家采纳,获得30
9秒前
猪猪hero应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
猪猪hero应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
飛全应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
10秒前
10秒前
南柯一梦发布了新的文献求助10
10秒前
10秒前
NJSGSKL发布了新的文献求助10
10秒前
Hello应助专注绿真采纳,获得30
10秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3704381
求助须知:如何正确求助?哪些是违规求助? 3253927
关于积分的说明 9886503
捐赠科研通 2965712
什么是DOI,文献DOI怎么找? 1626530
邀请新用户注册赠送积分活动 770853
科研通“疑难数据库(出版商)”最低求助积分说明 743062