Harnessing Machine Learning Potential for Personalised Drug Design and Overcoming Drug Resistance

计算机科学 药品 抗药性 药物输送 风险分析(工程) 纳米技术 医学 药理学 生物 材料科学 微生物学
作者
Mohammed Ageeli Hakami
出处
期刊:Journal of Drug Targeting [Informa]
卷期号:32 (8): 918-930 被引量:1
标识
DOI:10.1080/1061186x.2024.2365934
摘要

Drug resistance in cancer treatment presents a significant challenge, necessitating innovative approaches to improve therapeutic efficacy. Integrating machine learning (ML) in cancer research is promising as ML algorithms outrival in analysing complex datasets, identifying patterns, and predicting treatment outcomes. Leveraging diverse data sources such as genomic profiles, clinical records, and drug response assays, ML uncovers molecular mechanisms of drug resistance, enabling personalised treatment, maximising efficacy and minimising adverse effects. Various ML algorithms contribute to the drug discovery process— Random Forest and Decision Trees predict drug-target interactions and aid in virtual screening, and SVM classify leads on bioactivity data. Neural Networks model QSAR to optimise lead compounds and K-means clustering group compounds with similar chemical properties aiding compound selection. Gaussian Processes predict drug responses, Bayesian Networks infer causal relationships, Autoencoders generate novel compounds, and Genetic Algorithms optimise molecular structures. These algorithms collectively enhance efficiency and success rates in drug design endeavours, from lead identification to optimisation and are cost-effective, empowering clinicians with real-time treatment monitoring and improving patient outcomes. This review highlights the immense potential of ML in revolutionising cancer care through effective drug design to reduce drug resistance, and we have also discussed various limitations and research gaps to understand better.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VDC发布了新的文献求助10
刚刚
Lyuemei完成签到 ,获得积分10
1秒前
恬恬完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
热依汗古丽完成签到,获得积分10
3秒前
HX发布了新的文献求助20
3秒前
4秒前
qian完成签到 ,获得积分10
5秒前
5秒前
Zzzzzzzzzzz发布了新的文献求助10
6秒前
6秒前
6秒前
典雅的果汁完成签到,获得积分20
8秒前
Laus完成签到,获得积分20
9秒前
搜集达人应助gzsy采纳,获得10
9秒前
俭朴夜雪发布了新的文献求助10
9秒前
Hello应助橙橙梨梨茶采纳,获得10
10秒前
认真的rain发布了新的文献求助50
11秒前
深情的鑫鹏完成签到,获得积分10
11秒前
寒涛先生发布了新的文献求助10
12秒前
空心发布了新的文献求助30
12秒前
希望天下0贩的0应助星星采纳,获得10
13秒前
krkr完成签到,获得积分10
13秒前
13秒前
13秒前
科研通AI5应助111111111采纳,获得10
14秒前
14秒前
粗犷的书包完成签到,获得积分10
15秒前
Jasper应助shanbaibai采纳,获得10
15秒前
15秒前
Laus发布了新的文献求助10
18秒前
18秒前
cheung发布了新的文献求助10
18秒前
害羞向日葵完成签到 ,获得积分10
19秒前
ppp完成签到,获得积分10
20秒前
唠叨的白萱完成签到,获得积分10
21秒前
傲娇的凡旋完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808