EDMD: An Entropy based Dissimilarity measure to cluster Mixed-categorical Data

范畴变量 度量(数据仓库) 熵(时间箭头) 星团(航天器) 数学 统计 聚类分析 人工智能 计算机科学 数据挖掘 模式识别(心理学) 物理 量子力学 程序设计语言
作者
Amit Kumar Kar,Mohammad Maksood Akhter,Amaresh Chandra Mishra,Sraban Kumar Mohanty
出处
期刊:Pattern Recognition [Elsevier]
卷期号:155: 110674-110674
标识
DOI:10.1016/j.patcog.2024.110674
摘要

The effectiveness of clustering techniques is significantly influenced by proximity measures irrespective of type of data and categorical data is no exception. Most of the existing proximity measures for categorical data assume that all attributes contribute equally to the distance measurement which is not true. Usually, frequency or probability-based approaches are better equipped in principle to counter this issue by appropriately weighting the attributes based on the intra-attribute statistical information. However, owing to the qualitative nature of categorical features, the intra-attribute disorder is not captured effectively by the popularly used continuum form of entropy known as Shannon or information entropy. If the categorical data contains ordinal features, then the problem multiplies because the existing measures treat all attributes as nominal. To address these issues, we propose a new Entropy-based Dissimilarity measure for Mixed categorical Data (EDMD) composed of both nominal and ordinal attributes. EDMD treats both nominal and ordinal attributes separately to capture the intrinsic information from the values of two different attribute types. We apply Boltzmann's definition of entropy, which is based on the principle of counting microstates, to exploit the intra-attribute statistical information of nominal attributes while preserving the order relationships among ordinal values in distance formulation. Additionally, the statistical significance of different attributes of the data towards dissimilarity computation is taken care of through attribute weighting. The proposed measure is free from any user-defined or domain-specific parameters and there is no prior assumption about the distribution of the data sets. Experimental results demonstrate the efficacy of EDMD in terms of cluster quality, accuracy, cluster discrimination ability, and execution time to handle mixed categorical data sets of different characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FYW发布了新的文献求助20
1秒前
w。发布了新的文献求助10
1秒前
4秒前
dfggg发布了新的文献求助100
5秒前
fcycukvujblk完成签到,获得积分10
5秒前
桔子发布了新的文献求助10
6秒前
emilybei发布了新的文献求助10
6秒前
7秒前
9秒前
睡不醒的xx完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
重要的静柏完成签到 ,获得积分10
10秒前
HH发布了新的文献求助10
11秒前
木子完成签到,获得积分10
13秒前
13秒前
13秒前
王雨晨完成签到 ,获得积分10
14秒前
14秒前
dfggg完成签到,获得积分10
16秒前
16秒前
16秒前
飘逸剑发布了新的文献求助10
17秒前
18秒前
可爱冰绿发布了新的文献求助10
19秒前
机灵雪曼完成签到 ,获得积分10
20秒前
活泼的白开水完成签到,获得积分10
21秒前
fyddsw发布了新的文献求助30
21秒前
Akim应助w。采纳,获得30
21秒前
善学以致用应助FYW采纳,获得10
21秒前
念姬发布了新的文献求助10
23秒前
23秒前
23秒前
人化自然完成签到 ,获得积分10
24秒前
NexusExplorer应助Munchr1采纳,获得10
25秒前
25秒前
nulinuli发布了新的文献求助10
27秒前
28秒前
田様应助老实难敌采纳,获得10
28秒前
29秒前
SciGPT应助liujie666采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598711
求助须知:如何正确求助?哪些是违规求助? 4684157
关于积分的说明 14833941
捐赠科研通 4664558
什么是DOI,文献DOI怎么找? 2537377
邀请新用户注册赠送积分活动 1504904
关于科研通互助平台的介绍 1470606