清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

EDMD: An Entropy based Dissimilarity measure to cluster Mixed-categorical Data

范畴变量 度量(数据仓库) 熵(时间箭头) 星团(航天器) 数学 统计 聚类分析 人工智能 计算机科学 数据挖掘 模式识别(心理学) 物理 量子力学 程序设计语言
作者
Amit Kumar Kar,Mohammad Maksood Akhter,Amaresh Chandra Mishra,Sraban Kumar Mohanty
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:155: 110674-110674
标识
DOI:10.1016/j.patcog.2024.110674
摘要

The effectiveness of clustering techniques is significantly influenced by proximity measures irrespective of type of data and categorical data is no exception. Most of the existing proximity measures for categorical data assume that all attributes contribute equally to the distance measurement which is not true. Usually, frequency or probability-based approaches are better equipped in principle to counter this issue by appropriately weighting the attributes based on the intra-attribute statistical information. However, owing to the qualitative nature of categorical features, the intra-attribute disorder is not captured effectively by the popularly used continuum form of entropy known as Shannon or information entropy. If the categorical data contains ordinal features, then the problem multiplies because the existing measures treat all attributes as nominal. To address these issues, we propose a new Entropy-based Dissimilarity measure for Mixed categorical Data (EDMD) composed of both nominal and ordinal attributes. EDMD treats both nominal and ordinal attributes separately to capture the intrinsic information from the values of two different attribute types. We apply Boltzmann's definition of entropy, which is based on the principle of counting microstates, to exploit the intra-attribute statistical information of nominal attributes while preserving the order relationships among ordinal values in distance formulation. Additionally, the statistical significance of different attributes of the data towards dissimilarity computation is taken care of through attribute weighting. The proposed measure is free from any user-defined or domain-specific parameters and there is no prior assumption about the distribution of the data sets. Experimental results demonstrate the efficacy of EDMD in terms of cluster quality, accuracy, cluster discrimination ability, and execution time to handle mixed categorical data sets of different characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
jlwang完成签到,获得积分10
18秒前
乏味发布了新的文献求助10
37秒前
43秒前
43秒前
像猫的狗完成签到 ,获得积分10
44秒前
幽默梦山完成签到,获得积分20
45秒前
幽默梦山发布了新的文献求助10
48秒前
zzgpku完成签到,获得积分0
1分钟前
在水一方应助幽默梦山采纳,获得10
1分钟前
平常的三问完成签到 ,获得积分10
1分钟前
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
kean1943完成签到,获得积分10
1分钟前
minnie完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
缓慢的蜗牛完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
savesunshine1022完成签到,获得积分10
2分钟前
Yangyang完成签到,获得积分10
2分钟前
2分钟前
2分钟前
嘟嘟噜发布了新的文献求助10
2分钟前
舒适以松发布了新的文献求助10
2分钟前
2分钟前
2分钟前
嘟嘟噜完成签到,获得积分10
2分钟前
lorentzh完成签到,获得积分10
3分钟前
笨笨完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
舒适以松完成签到,获得积分10
3分钟前
绿色心情完成签到 ,获得积分10
4分钟前
firesquall完成签到,获得积分10
4分钟前
乏味完成签到,获得积分20
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015363
求助须知:如何正确求助?哪些是违规求助? 3555313
关于积分的说明 11317959
捐赠科研通 3288629
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 811983