亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EDMD: An Entropy based Dissimilarity measure to cluster Mixed-categorical Data

范畴变量 度量(数据仓库) 熵(时间箭头) 星团(航天器) 数学 统计 聚类分析 人工智能 计算机科学 数据挖掘 模式识别(心理学) 物理 量子力学 程序设计语言
作者
Amit Kumar Kar,Mohammad Maksood Akhter,Amaresh Chandra Mishra,Sraban Kumar Mohanty
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:155: 110674-110674
标识
DOI:10.1016/j.patcog.2024.110674
摘要

The effectiveness of clustering techniques is significantly influenced by proximity measures irrespective of type of data and categorical data is no exception. Most of the existing proximity measures for categorical data assume that all attributes contribute equally to the distance measurement which is not true. Usually, frequency or probability-based approaches are better equipped in principle to counter this issue by appropriately weighting the attributes based on the intra-attribute statistical information. However, owing to the qualitative nature of categorical features, the intra-attribute disorder is not captured effectively by the popularly used continuum form of entropy known as Shannon or information entropy. If the categorical data contains ordinal features, then the problem multiplies because the existing measures treat all attributes as nominal. To address these issues, we propose a new Entropy-based Dissimilarity measure for Mixed categorical Data (EDMD) composed of both nominal and ordinal attributes. EDMD treats both nominal and ordinal attributes separately to capture the intrinsic information from the values of two different attribute types. We apply Boltzmann's definition of entropy, which is based on the principle of counting microstates, to exploit the intra-attribute statistical information of nominal attributes while preserving the order relationships among ordinal values in distance formulation. Additionally, the statistical significance of different attributes of the data towards dissimilarity computation is taken care of through attribute weighting. The proposed measure is free from any user-defined or domain-specific parameters and there is no prior assumption about the distribution of the data sets. Experimental results demonstrate the efficacy of EDMD in terms of cluster quality, accuracy, cluster discrimination ability, and execution time to handle mixed categorical data sets of different characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
从容道天发布了新的文献求助10
7秒前
Zosia发布了新的文献求助10
12秒前
14秒前
迷你的靖雁完成签到,获得积分10
15秒前
啊怙纲完成签到 ,获得积分10
17秒前
19秒前
21秒前
23秒前
ZHEN发布了新的文献求助10
24秒前
GingerF完成签到,获得积分0
26秒前
hjjjjj1发布了新的文献求助10
26秒前
善学以致用应助陶1122采纳,获得10
27秒前
尘尘发布了新的文献求助10
30秒前
大个应助hjjjjj1采纳,获得10
34秒前
尘尘完成签到,获得积分10
39秒前
hjjjjj1完成签到,获得积分10
41秒前
何为完成签到 ,获得积分0
44秒前
笨笨小蚂蚁完成签到 ,获得积分10
44秒前
wanci应助ZHEN采纳,获得10
48秒前
李健的小迷弟应助decade采纳,获得10
50秒前
ZHEN完成签到,获得积分10
56秒前
李金文应助科研通管家采纳,获得10
56秒前
56秒前
1分钟前
陶1122发布了新的文献求助10
1分钟前
思源应助可个可可采纳,获得10
1分钟前
科目三应助陶1122采纳,获得10
1分钟前
1分钟前
1分钟前
可个可可发布了新的文献求助10
1分钟前
传奇3应助song采纳,获得10
1分钟前
鲤鲤完成签到,获得积分10
1分钟前
lixiaolu完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
紫亦君发布了新的文献求助10
1分钟前
可个可可完成签到,获得积分20
1分钟前
Runjin_Hu发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610770
求助须知:如何正确求助?哪些是违规求助? 4016589
关于积分的说明 12435470
捐赠科研通 3698235
什么是DOI,文献DOI怎么找? 2039335
邀请新用户注册赠送积分活动 1072208
科研通“疑难数据库(出版商)”最低求助积分说明 955865