亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EDMD: An Entropy based Dissimilarity measure to cluster Mixed-categorical Data

范畴变量 度量(数据仓库) 熵(时间箭头) 星团(航天器) 数学 统计 聚类分析 人工智能 计算机科学 数据挖掘 模式识别(心理学) 物理 量子力学 程序设计语言
作者
Amit Kumar Kar,Mohammad Maksood Akhter,Amaresh Chandra Mishra,Sraban Kumar Mohanty
出处
期刊:Pattern Recognition [Elsevier]
卷期号:155: 110674-110674
标识
DOI:10.1016/j.patcog.2024.110674
摘要

The effectiveness of clustering techniques is significantly influenced by proximity measures irrespective of type of data and categorical data is no exception. Most of the existing proximity measures for categorical data assume that all attributes contribute equally to the distance measurement which is not true. Usually, frequency or probability-based approaches are better equipped in principle to counter this issue by appropriately weighting the attributes based on the intra-attribute statistical information. However, owing to the qualitative nature of categorical features, the intra-attribute disorder is not captured effectively by the popularly used continuum form of entropy known as Shannon or information entropy. If the categorical data contains ordinal features, then the problem multiplies because the existing measures treat all attributes as nominal. To address these issues, we propose a new Entropy-based Dissimilarity measure for Mixed categorical Data (EDMD) composed of both nominal and ordinal attributes. EDMD treats both nominal and ordinal attributes separately to capture the intrinsic information from the values of two different attribute types. We apply Boltzmann's definition of entropy, which is based on the principle of counting microstates, to exploit the intra-attribute statistical information of nominal attributes while preserving the order relationships among ordinal values in distance formulation. Additionally, the statistical significance of different attributes of the data towards dissimilarity computation is taken care of through attribute weighting. The proposed measure is free from any user-defined or domain-specific parameters and there is no prior assumption about the distribution of the data sets. Experimental results demonstrate the efficacy of EDMD in terms of cluster quality, accuracy, cluster discrimination ability, and execution time to handle mixed categorical data sets of different characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
13秒前
liushangyuan发布了新的文献求助10
16秒前
朴实山兰完成签到 ,获得积分10
20秒前
21秒前
liushangyuan关注了科研通微信公众号
34秒前
35秒前
浮游应助null采纳,获得10
36秒前
38秒前
ClarkClarkson完成签到,获得积分10
42秒前
满意人英完成签到,获得积分10
42秒前
默默善愁发布了新的文献求助30
43秒前
yan完成签到,获得积分10
46秒前
47秒前
乐乐应助yan采纳,获得10
55秒前
58秒前
1分钟前
Criminology34举报瞿寒求助涉嫌违规
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
手可摘星陈同学完成签到 ,获得积分10
1分钟前
怕黑的映真完成签到,获得积分10
1分钟前
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
2分钟前
yan发布了新的文献求助10
2分钟前
2分钟前
陈子宇完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413236
求助须知:如何正确求助?哪些是违规求助? 4530397
关于积分的说明 14122909
捐赠科研通 4445358
什么是DOI,文献DOI怎么找? 2439191
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408692