EDMD: An Entropy based Dissimilarity measure to cluster Mixed-categorical Data

范畴变量 度量(数据仓库) 熵(时间箭头) 星团(航天器) 数学 统计 聚类分析 人工智能 计算机科学 数据挖掘 模式识别(心理学) 物理 量子力学 程序设计语言
作者
Amit Kumar Kar,Mohammad Maksood Akhter,Amaresh Chandra Mishra,Sraban Kumar Mohanty
出处
期刊:Pattern Recognition [Elsevier]
卷期号:155: 110674-110674
标识
DOI:10.1016/j.patcog.2024.110674
摘要

The effectiveness of clustering techniques is significantly influenced by proximity measures irrespective of type of data and categorical data is no exception. Most of the existing proximity measures for categorical data assume that all attributes contribute equally to the distance measurement which is not true. Usually, frequency or probability-based approaches are better equipped in principle to counter this issue by appropriately weighting the attributes based on the intra-attribute statistical information. However, owing to the qualitative nature of categorical features, the intra-attribute disorder is not captured effectively by the popularly used continuum form of entropy known as Shannon or information entropy. If the categorical data contains ordinal features, then the problem multiplies because the existing measures treat all attributes as nominal. To address these issues, we propose a new Entropy-based Dissimilarity measure for Mixed categorical Data (EDMD) composed of both nominal and ordinal attributes. EDMD treats both nominal and ordinal attributes separately to capture the intrinsic information from the values of two different attribute types. We apply Boltzmann's definition of entropy, which is based on the principle of counting microstates, to exploit the intra-attribute statistical information of nominal attributes while preserving the order relationships among ordinal values in distance formulation. Additionally, the statistical significance of different attributes of the data towards dissimilarity computation is taken care of through attribute weighting. The proposed measure is free from any user-defined or domain-specific parameters and there is no prior assumption about the distribution of the data sets. Experimental results demonstrate the efficacy of EDMD in terms of cluster quality, accuracy, cluster discrimination ability, and execution time to handle mixed categorical data sets of different characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山月鹿完成签到,获得积分10
刚刚
鸠摩智发布了新的文献求助10
刚刚
李健的小迷弟应助Lay采纳,获得10
刚刚
xiaominl发布了新的文献求助80
1秒前
科研牛马完成签到,获得积分10
2秒前
彭于晏应助动听锦程采纳,获得10
2秒前
XMH完成签到,获得积分10
4秒前
文静的绿真完成签到,获得积分10
4秒前
笋笋发布了新的文献求助10
4秒前
丰富的雪糕完成签到,获得积分10
5秒前
slj完成签到,获得积分10
5秒前
5秒前
我是老大应助ayu采纳,获得10
7秒前
一清完成签到,获得积分20
7秒前
10秒前
10秒前
10秒前
Ellen发布了新的文献求助10
10秒前
专注寻菱发布了新的文献求助10
10秒前
兰彻完成签到,获得积分10
10秒前
轻松戎完成签到,获得积分20
12秒前
LEE完成签到,获得积分10
13秒前
石友瑶发布了新的文献求助10
14秒前
14秒前
执着柏柳发布了新的文献求助10
16秒前
17秒前
yznfly应助仁者采纳,获得20
17秒前
脑洞疼应助刘嘉城采纳,获得10
17秒前
17秒前
17秒前
18秒前
梅子发布了新的文献求助10
20秒前
yuzhecheng发布了新的文献求助10
21秒前
1526918042发布了新的文献求助10
21秒前
Muzz完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
知悉发布了新的文献求助10
22秒前
23秒前
NexusExplorer应助张一二二二采纳,获得10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606214
求助须知:如何正确求助?哪些是违规求助? 4690656
关于积分的说明 14864955
捐赠科研通 4704298
什么是DOI,文献DOI怎么找? 2542488
邀请新用户注册赠送积分活动 1508024
关于科研通互助平台的介绍 1472232