Cancer cachexia as a predictor of adverse outcomes in patients with non-small cell lung cancer: A meta-analysis

医学 荟萃分析 恶病质 癌症 肿瘤科 肺癌 内科学 不利影响 癌症恶病质
作者
Junfang Zhang,Xuan Tang,Wenbo Zhang,Ying Xu,Heng Zhang,Yu Fan
出处
期刊:Clinical Nutrition [Elsevier]
卷期号:43 (7): 1618-1625 被引量:1
标识
DOI:10.1016/j.clnu.2024.05.025
摘要

Introduction Cancer cachexia is a complex problem characterized by weight loss due to skeletal muscle and adipose tissue reduction. The purpose of this meta-analysis is to examine the association between cancer cachexia and adverse outcomes in patients with non-small cell lung cancer (NSCLC). Methods A comprehensive search was conducted in the PubMed, Web of Science, and Embase databases from their inception to January 15, 2024. Retrospective or prospective studies that investigated the cancer cachexia as a predictor of overall survival (OS), progression-free survival (PFS), overall response rate (ORR), or disease control rate (DCR) in NSCLC patients were included in this analysis. Results Sixteen studies, comprising 5,919 NSCLC patients, were identified. The pooled prevalence of cachexia in NSCLC patients was 39%, with individual studies reporting rates ranging from 19% to 63.8%. A meta-analysis using a random effects model showed that cachexia was associated with reduced OS (hazard ratio [HR] 1.84; 95% confidence interval [CI] 1.54-2.21) and PFS (HR 1.49; 95% CI 1.27-1.73). Subgroup analysis indicated that cancer cachexia significantly predicted OS, regardless of study design, NSCLC subtypes, cancer stage, definitions of cachexia, or follow-up duration. However, there was no clear association between cancer cachexia and ORR or DCR. Conclusions Cancer cachexia emerges is a negative prognostic factor for OS and PFS in NSCLC patients. Assessing cancer cachexia can improve risk classification for survival outcomes in this patient population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
米酒完成签到,获得积分10
刚刚
step_stone给step_stone的求助进行了留言
刚刚
乐乐应助ayin采纳,获得10
1秒前
无花果应助hhh采纳,获得10
3秒前
叁壹粑粑完成签到,获得积分10
4秒前
酷酷碧完成签到,获得积分10
4秒前
5秒前
磕盐民工完成签到,获得积分10
6秒前
6秒前
忘羡222发布了新的文献求助20
6秒前
我是老大应助TT采纳,获得10
8秒前
8秒前
8秒前
雪鸽鸽完成签到,获得积分10
9秒前
完美世界应助开心青旋采纳,获得10
9秒前
LD完成签到 ,获得积分10
11秒前
xjy完成签到 ,获得积分10
11秒前
qzaima完成签到,获得积分10
11秒前
12秒前
xueshufengbujue完成签到,获得积分10
12秒前
楼寒天发布了新的文献求助10
12秒前
13秒前
科研通AI5应助111111111采纳,获得10
14秒前
14秒前
sunsunsun完成签到,获得积分10
14秒前
哎嘤斯坦完成签到,获得积分10
16秒前
16秒前
sweetbearm应助潦草采纳,获得10
17秒前
sunsunsun发布了新的文献求助10
17秒前
酷波er应助Mars采纳,获得10
18秒前
迪士尼在逃后母完成签到,获得积分10
18秒前
18秒前
我是老大应助su采纳,获得10
19秒前
hhh发布了新的文献求助10
20秒前
21秒前
科研通AI5应助魏伯安采纳,获得10
22秒前
22秒前
神可馨完成签到 ,获得积分10
23秒前
Hangerli发布了新的文献求助20
23秒前
HealthyCH完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824