An enhanced framework for identifying brain tumor using discrete wavelet transform, deep convolutional network, and feature fusion‐based machine learning techniques

人工智能 计算机科学 离散小波变换 模式识别(心理学) 卷积神经网络 特征提取 深度学习 鉴定(生物学) 小波 特征(语言学) 脑活检 小波变换 机器学习 磁共振成像 放射科 医学 哲学 生物 植物 语言学
作者
Rajat Mehrotra,M. A. Ansari,Rajeev Agrawal,Hisham Al‐Ward,Pragati Tripathi,Jay Kumar Singh
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (1) 被引量:12
标识
DOI:10.1002/ima.22983
摘要

Abstract Today, the histological study of biopsy specimens is still used to diagnose brain tumors (BTs). This existing procedure is intrusive, arduous, and liable to mistakes. These downsides highlight the standing of employing a completely computerized process for identifying the evolution of tumors in the brain. A primary BT affects an estimated 0.7 million persons in the United States now and more are expected to be detected in the coming years. The ability to categorize magnetic resonance (MR) brain images into ordinary and pathological categories has the boundless ability to significantly diminish the burden on the radiologist. Pre‐processing, extraction, and reduction of features along with their classification are the parameters of statistical‐based methodologies that have been frequently used for this purpose. In this work, an enhanced framework for the identification of the BT is proposed using discrete wavelet transform (DWT), deep convolutional network (DCN), and machine learning (ML). As DWT is primarily used for image compression and denoising applications however in the presented research work it has been utilized for extricating pivotal features from the MR images using the feature fusion technique. DCN is also utilized for the extraction of pivotal deep features which are then combined with the wavelet‐based features for the purpose of BT identification. The classification of tumorous and non‐tumorous MR images is done using ML applications. The results obtained from the proposed model exhibit an utmost accuracy of 99.5% with an area under curve of 1 in identifying tumorous and non‐tumorous MR images as compared to various state‐of‐the‐art models. The proposed model can be efficiently used for assisting radiologists and medical experts in validating their decisions for BT identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MRM发布了新的文献求助10
2秒前
鲤鱼灵阳完成签到,获得积分10
2秒前
2秒前
快乐的千亦完成签到 ,获得积分10
3秒前
5秒前
6秒前
单细胞测序完成签到,获得积分10
7秒前
热情的板栗完成签到,获得积分10
8秒前
zx完成签到,获得积分10
8秒前
迟大猫应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
maox1aoxin应助科研通管家采纳,获得30
9秒前
慕青应助科研通管家采纳,获得10
9秒前
迟大猫应助科研通管家采纳,获得10
9秒前
Lingdongmei应助科研通管家采纳,获得10
9秒前
迟大猫应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得30
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
CodeCraft应助舒心的南珍采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
Singularity应助科研通管家采纳,获得10
10秒前
迟大猫应助科研通管家采纳,获得80
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
124应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
迟大猫应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
11秒前
11秒前
威武的皮卡丘完成签到,获得积分10
11秒前
黑粉头头完成签到,获得积分10
12秒前
满意以筠完成签到,获得积分10
15秒前
英俊的铭应助PeizeWu采纳,获得10
17秒前
oldblack完成签到,获得积分10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672384
求助须知:如何正确求助?哪些是违规求助? 3228736
关于积分的说明 9781794
捐赠科研通 2939160
什么是DOI,文献DOI怎么找? 1610638
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174