The challenges of ideological and political education in higher education institutions in the era of big data and its path analysis

意识形态 乐观 主义 社会学 政治 社会心理学 公共关系 社会科学 政治学 心理学 法学
作者
Ting Liu
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1) 被引量:1
标识
DOI:10.2478/amns.2023.2.00531
摘要

Abstract With the continuous development of information technology, digitalization and networking have become the main features of today’s society; in such a context, ideological and political education in higher education institutions faces many challenges. In this paper, the acceptance process of ideological and political education for higher vocational students is divided into five major elements: transmission subject, acceptance subject, acceptance object, acceptance intermediary, and acceptance environment, and the interaction mechanism between the five major elements is analyzed. Secondly, it proposes to adopt the knowledge tracking of fusion learning factors (EKPT) model to decompose contradictory factors for the prior probability of curriculum fusion ideological and political knowledge matrix V and the prior probability of fusion ideological and political elements modeling students’ knowledge level tensor U. The final results of the empirical analysis of acceptance of ideological and political education based on the EKPT model show that the correlation coefficients between teaching efficacy and acceptance of ideological and political teaching behaviors range from 0.361-0.559, and the correlation coefficients between psychological strength, psychological optimism, total psychological resilience scores, and ideological and political teaching efficacy show high correlations ranging from 0.538-0.683. The research in this paper helps higher education institution’s ideological and political education to better adapt to the needs of the data era and improve students’ ideological and political quality and comprehensive literacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lucas应助我是谁采纳,获得10
1秒前
1秒前
胡33完成签到,获得积分10
1秒前
充电宝应助1680Y采纳,获得10
1秒前
2秒前
科研通AI5应助SPQR采纳,获得10
2秒前
谨慎井完成签到 ,获得积分10
3秒前
bkagyin应助无限妙梦采纳,获得10
3秒前
huihui完成签到,获得积分10
3秒前
小熊猫完成签到,获得积分10
4秒前
如泣草芥发布了新的文献求助10
4秒前
星辰大海应助锂炸采纳,获得10
4秒前
5秒前
wangxuhui1978发布了新的文献求助20
5秒前
yht发布了新的文献求助10
6秒前
风趣遥发布了新的文献求助30
7秒前
8秒前
2810527600完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
liuwenjie应助铁布衫金钟罩采纳,获得10
11秒前
小珂发布了新的文献求助10
13秒前
852应助风趣遥采纳,获得10
13秒前
14秒前
无限妙梦发布了新的文献求助10
14秒前
Jasper应助QP采纳,获得10
15秒前
晶晶完成签到,获得积分10
15秒前
16秒前
欣慰猕猴桃完成签到,获得积分10
16秒前
17秒前
18秒前
fierceman发布了新的文献求助30
19秒前
富婆嘉嘉子完成签到 ,获得积分10
19秒前
19秒前
22秒前
22秒前
HHHHHH发布了新的文献求助10
22秒前
Lucas应助莹莹采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 530
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3578938
求助须知:如何正确求助?哪些是违规求助? 3148566
关于积分的说明 9474296
捐赠科研通 2850164
什么是DOI,文献DOI怎么找? 1566922
邀请新用户注册赠送积分活动 733687
科研通“疑难数据库(出版商)”最低求助积分说明 720221