并行传输
胰高血糖素样肽-1
肽
化学
胰岛素
分泌物
细胞
内科学
细胞生物学
内分泌学
生物化学
生物
2型糖尿病
医学
糖尿病
膜
磁导率
作者
Mingkai Zhang,Ling Zhu,Hui Zhang,Xingguo Wang,Gangcheng Wu,Xiguang Qi
标识
DOI:10.1021/acs.jafc.3c04940
摘要
There is currently no appropriate cell model suitable for evaluating the insulinotropic effects of DPP-4 inhibitory peptides (DPP-4IPs) mediated by active glucagon-like peptide-17-36 (active GLP-1). The study aims to evaluate the transepithelial transport of IPYWTY on its in situ insulinotropic effects by using a 2D and dual-layered coculture cell model that consists of Caco-2 and NCI-H716 cells on the apical (AP) side and β-TC-6 cells on the basolateral (BL) side. During transportation, IPYWTY was absorbed in its intact form through PepT1 and paracellular transport. Meanwhile, it was degraded to several peptide fragments, including PYWTY, YWTY, WTY, and IPY, which decreased its in situ DPP-4 inhibitory activity. IPYWTY does not directly stimulate insulin release in β-TC-6 cells, while it increased the active GLP-1 level from 76.57 ± 15.16 to 95.63 ± 1.99 pM (1.25 times) in NCI-H716 cells. Interestingly, IPYWTY indirectly increased insulin levels from 426.91 ± 6.07 to 573.94 ± 2.97 μIU/mL (1.34 times) in the 2D and dual-layered coculture cell model for its dual function of stimulating active GLP-1 secretion and DPP-4 inhibition. These results suggested that the 2D and dual-layered coculture cell model is an alternative strategy for effectively evaluating the insulinotropic effects of DPP-4IPs mediated by active GLP-1.
科研通智能强力驱动
Strongly Powered by AbleSci AI