计算机科学
分级(工程)
情态动词
推论
人工智能
机器学习
模式
深度学习
模式识别(心理学)
自然语言处理
数据挖掘
社会学
土木工程
工程类
化学
高分子化学
社会科学
作者
Xiaohan Xing,Meilu Zhu,Zhen Chen,Yixuan Yuan
标识
DOI:10.1016/j.media.2023.102990
摘要
The fusion of multi-modal data, e.g., pathology slides and genomic profiles, can provide complementary information and benefit glioma grading. However, genomic profiles are difficult to obtain due to the high costs and technical challenges, thus limiting the clinical applications of multi-modal diagnosis. In this work, we investigate the realistic problem where paired pathology-genomic data are available during training, while only pathology slides are accessible for inference. To solve this problem, a comprehensive learning and adaptive teaching framework is proposed to improve the performance of pathological grading models by transferring the privileged knowledge from the multi-modal teacher to the pathology student. For comprehensive learning of the multi-modal teacher, we propose a novel Saliency-Aware Masking (SA-Mask) strategy to explore richer disease-related features from both modalities by masking the most salient features. For adaptive teaching of the pathology student, we first devise a Local Topology Preserving and Discrepancy Eliminating Contrastive Distillation (TDC-Distill) module to align the feature distributions of the teacher and student models. Furthermore, considering the multi-modal teacher may include incorrect information, we propose a Gradient-guided Knowledge Refinement (GK-Refine) module that builds a knowledge bank and adaptively absorbs the reliable knowledge according to their agreement in the gradient space. Experiments on the TCGA GBM-LGG dataset show that our proposed distillation framework improves the pathological glioma grading and outperforms other KD methods. Notably, with the sole pathology slides, our method achieves comparable performance with existing multi-modal methods. The code is available at https://github.com/CUHK-AIM-Group/MultiModal-learning.
科研通智能强力驱动
Strongly Powered by AbleSci AI