Clinically-Inspired Multi-Agent Transformers for Disease Trajectory Forecasting From Multimodal Data

计算机科学 人工智能 变压器 机器学习 弹道 深度学习 数据挖掘 天文 量子力学 物理 电压
作者
Huy Hoang Nguyen,Matthew B. Blaschko,Simo Saarakkala,Aleksei Tiulpin
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 529-541 被引量:13
标识
DOI:10.1109/tmi.2023.3312524
摘要

Deep neural networks are often applied to medical images to automate the problem of medical diagnosis. However, a more clinically relevant question that practitioners usually face is how to predict the future trajectory of a disease. Current methods for prognosis or disease trajectory forecasting often require domain knowledge and are complicated to apply. In this paper, we formulate the prognosis prediction problem as a one-to-many prediction problem. Inspired by a clinical decision-making process with two agents-a radiologist and a general practitioner - we predict prognosis with two transformer-based components that share information with each other. The first transformer in this framework aims to analyze the imaging data, and the second one leverages its internal states as inputs, also fusing them with auxiliary clinical data. The temporal nature of the problem is modeled within the transformer states, allowing us to treat the forecasting problem as a multi-task classification, for which we propose a novel loss. We show the effectiveness of our approach in predicting the development of structural knee osteoarthritis changes and forecasting Alzheimer's disease clinical status directly from raw multi-modal data. The proposed method outperforms multiple state-of-the-art baselines with respect to performance and calibration, both of which are needed for real-world applications. An open-source implementation of our method is made publicly available at https://github.com/Oulu-IMEDS/CLIMATv2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妞妞完成签到,获得积分20
1秒前
搜集达人应助邢夏之采纳,获得10
1秒前
1秒前
上转换完成签到,获得积分10
2秒前
3秒前
杳鸢应助sumugeng采纳,获得10
3秒前
3秒前
Ava应助滴滴哒哒采纳,获得10
4秒前
Duan完成签到,获得积分10
4秒前
orixero应助魏魏采纳,获得10
4秒前
左白易发布了新的文献求助10
5秒前
6秒前
归尘发布了新的文献求助10
6秒前
陈M雯发布了新的文献求助10
6秒前
6秒前
潘潘婷发布了新的文献求助10
7秒前
李梦琦发布了新的文献求助10
9秒前
顺顺完成签到 ,获得积分10
10秒前
明瀚完成签到 ,获得积分10
10秒前
10秒前
自然火车发布了新的文献求助10
11秒前
李科完成签到,获得积分10
11秒前
11秒前
12秒前
snai1发布了新的文献求助10
13秒前
小蘑菇应助李梦琦采纳,获得10
13秒前
Metx完成签到 ,获得积分10
14秒前
小小发布了新的文献求助10
14秒前
14秒前
15秒前
程程程完成签到,获得积分10
16秒前
16秒前
bkagyin应助邢夏之采纳,获得10
17秒前
康3发布了新的文献求助30
17秒前
17秒前
18秒前
yiqi完成签到,获得积分10
18秒前
sjx发布了新的文献求助10
18秒前
19秒前
试验顺利发布了新的文献求助10
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483126
求助须知:如何正确求助?哪些是违规求助? 3072548
关于积分的说明 9127020
捐赠科研通 2764145
什么是DOI,文献DOI怎么找? 1516910
邀请新用户注册赠送积分活动 701852
科研通“疑难数据库(出版商)”最低求助积分说明 700728