Domain - Aware Spatial-Temporal Graph Convolutional Network for Sleep Apnea Detection via Multivariant BCG Signals

计算机科学 稳健性(进化) 模式识别(心理学) 人工智能 图形 睡眠呼吸暂停 判别式 呼吸暂停 机器学习 医学 理论计算机科学 内科学 生物化学 化学 基因
作者
Yongfeng Huang,Kuiyou Chen,Zhiming Zhang
标识
DOI:10.1109/icc45041.2023.10278967
摘要

Sleep apnea is a common respiratory disorder that affects up to one billion people globally. It is shown to be an independent risk factor for the cardiovascular diseases and even mortality. Sleep apnea detection via ballistocardiogram (BCG) signals is still a challenging task due to poor signal quality and signal-to-noise ratio. In order to achieve higher exactitude, convolution networks are most frequently-used to capture temporal features. However, the second-order information (movements of the thorax and the diaphragm) of the Multivariant BCG signals, which is naturally more informative and discriminative for sleep apnea detection, is rarely investigated in existing methods. Additionally, it is rarely investigated in existing methods that BCG signals from different subjects are in heterogenous distribution. This may not be optimal for extracting respiratory-relevant features and excluding subject-specific patterns. In this paper, we propose the Domain-aware Spatial-Temporal Graph Convolutional Network (DAST-GCN) to explicitly capture inter-sensor dependencies. Dynamic graph connection and attention mechanism are implemented to fully utilize such dependencies. We further employ an adversarial domain adaptation module to extract domain-invariant features. Experiments on a BCG dataset validate the effectiveness of the proposed method. Furthermore, we illustrate that DAST-GCN captures crucial respiratory patterns and improves the robustness against the domain shift issue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉舟完成签到 ,获得积分10
1秒前
科研通AI6应助AAAAA采纳,获得10
1秒前
季不住完成签到,获得积分10
2秒前
科研通AI6应助精明的zm采纳,获得10
2秒前
海边听海发布了新的文献求助30
3秒前
WWW完成签到,获得积分10
3秒前
3秒前
4秒前
天天快乐应助lin采纳,获得10
4秒前
思源应助等待的白易采纳,获得10
4秒前
5秒前
金开发布了新的文献求助10
5秒前
5秒前
6秒前
科研通AI6应助书雪采纳,获得10
8秒前
Akim应助俊逸的盛男采纳,获得10
8秒前
9秒前
科目三应助ppjkq1采纳,获得10
9秒前
汉堡包应助等待的音响采纳,获得10
9秒前
倪小发布了新的文献求助10
9秒前
老仙翁发布了新的文献求助30
10秒前
飘逸晓曼发布了新的文献求助10
10秒前
11秒前
11秒前
喜悦斌发布了新的文献求助10
12秒前
orixero应助czw采纳,获得10
12秒前
舒心凡应助上瘾采纳,获得30
16秒前
JamesPei应助专一的摩托车采纳,获得10
16秒前
17秒前
17秒前
科研通AI6应助飘逸晓曼采纳,获得10
17秒前
18秒前
18秒前
自自自在发布了新的文献求助10
19秒前
19秒前
19秒前
善学以致用应助研友_nv2r4n采纳,获得10
20秒前
21秒前
落寞莫茗发布了新的文献求助10
22秒前
SunS发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589341
求助须知:如何正确求助?哪些是违规求助? 4674104
关于积分的说明 14791759
捐赠科研通 4628240
什么是DOI,文献DOI怎么找? 2532262
邀请新用户注册赠送积分活动 1500881
关于科研通互助平台的介绍 1468438