重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Domain - Aware Spatial-Temporal Graph Convolutional Network for Sleep Apnea Detection via Multivariant BCG Signals

计算机科学 稳健性(进化) 模式识别(心理学) 人工智能 图形 睡眠呼吸暂停 判别式 呼吸暂停 机器学习 医学 理论计算机科学 内科学 生物化学 化学 基因
作者
Yongfeng Huang,Kuiyou Chen,Zhiming Zhang
标识
DOI:10.1109/icc45041.2023.10278967
摘要

Sleep apnea is a common respiratory disorder that affects up to one billion people globally. It is shown to be an independent risk factor for the cardiovascular diseases and even mortality. Sleep apnea detection via ballistocardiogram (BCG) signals is still a challenging task due to poor signal quality and signal-to-noise ratio. In order to achieve higher exactitude, convolution networks are most frequently-used to capture temporal features. However, the second-order information (movements of the thorax and the diaphragm) of the Multivariant BCG signals, which is naturally more informative and discriminative for sleep apnea detection, is rarely investigated in existing methods. Additionally, it is rarely investigated in existing methods that BCG signals from different subjects are in heterogenous distribution. This may not be optimal for extracting respiratory-relevant features and excluding subject-specific patterns. In this paper, we propose the Domain-aware Spatial-Temporal Graph Convolutional Network (DAST-GCN) to explicitly capture inter-sensor dependencies. Dynamic graph connection and attention mechanism are implemented to fully utilize such dependencies. We further employ an adversarial domain adaptation module to extract domain-invariant features. Experiments on a BCG dataset validate the effectiveness of the proposed method. Furthermore, we illustrate that DAST-GCN captures crucial respiratory patterns and improves the robustness against the domain shift issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苏木完成签到,获得积分10
刚刚
刚刚
chenry发布了新的文献求助10
刚刚
刚刚
wangji发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
李健的小迷弟应助苏木采纳,获得10
4秒前
tang发布了新的文献求助10
4秒前
4秒前
5秒前
Milktea123完成签到,获得积分10
6秒前
Lxy完成签到,获得积分10
6秒前
6秒前
大模型应助Niko采纳,获得30
7秒前
巫剑发布了新的文献求助10
8秒前
潇涯发布了新的文献求助30
8秒前
小二郎应助tang采纳,获得10
8秒前
CipherSage应助Retromer采纳,获得10
8秒前
搜集达人应助阿橘采纳,获得10
8秒前
chenry完成签到,获得积分10
9秒前
务实三颜发布了新的文献求助10
9秒前
ssn发布了新的文献求助10
9秒前
笑一笑完成签到,获得积分10
9秒前
科研通AI6应助hunzizzzzz采纳,获得10
9秒前
lindsay完成签到,获得积分10
11秒前
11秒前
12秒前
情怀应助无心的砖家采纳,获得10
13秒前
hyjcs完成签到,获得积分0
13秒前
13秒前
顾矜应助lemono_o采纳,获得30
13秒前
14秒前
14秒前
14秒前
15秒前
15秒前
16秒前
Fyf333发布了新的文献求助100
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467818
求助须知:如何正确求助?哪些是违规求助? 4571406
关于积分的说明 14330055
捐赠科研通 4497984
什么是DOI,文献DOI怎么找? 2464215
邀请新用户注册赠送积分活动 1452991
关于科研通互助平台的介绍 1427699