Domain - Aware Spatial-Temporal Graph Convolutional Network for Sleep Apnea Detection via Multivariant BCG Signals

计算机科学 稳健性(进化) 模式识别(心理学) 人工智能 图形 睡眠呼吸暂停 判别式 呼吸暂停 机器学习 医学 理论计算机科学 内科学 生物化学 化学 基因
作者
Yongfeng Huang,Kuiyou Chen,Zhiming Zhang
标识
DOI:10.1109/icc45041.2023.10278967
摘要

Sleep apnea is a common respiratory disorder that affects up to one billion people globally. It is shown to be an independent risk factor for the cardiovascular diseases and even mortality. Sleep apnea detection via ballistocardiogram (BCG) signals is still a challenging task due to poor signal quality and signal-to-noise ratio. In order to achieve higher exactitude, convolution networks are most frequently-used to capture temporal features. However, the second-order information (movements of the thorax and the diaphragm) of the Multivariant BCG signals, which is naturally more informative and discriminative for sleep apnea detection, is rarely investigated in existing methods. Additionally, it is rarely investigated in existing methods that BCG signals from different subjects are in heterogenous distribution. This may not be optimal for extracting respiratory-relevant features and excluding subject-specific patterns. In this paper, we propose the Domain-aware Spatial-Temporal Graph Convolutional Network (DAST-GCN) to explicitly capture inter-sensor dependencies. Dynamic graph connection and attention mechanism are implemented to fully utilize such dependencies. We further employ an adversarial domain adaptation module to extract domain-invariant features. Experiments on a BCG dataset validate the effectiveness of the proposed method. Furthermore, we illustrate that DAST-GCN captures crucial respiratory patterns and improves the robustness against the domain shift issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助哔噗哔噗采纳,获得10
1秒前
木木发布了新的文献求助10
1秒前
2秒前
xiaozhang完成签到 ,获得积分10
2秒前
哈哈哈完成签到,获得积分10
3秒前
阿嘎普莱特完成签到,获得积分0
3秒前
4秒前
lisa完成签到,获得积分10
4秒前
Bingzheng完成签到,获得积分10
4秒前
小二郎应助123采纳,获得10
6秒前
刻苦蚂蚁发布了新的文献求助10
7秒前
simin发布了新的文献求助10
7秒前
7秒前
8秒前
WW完成签到,获得积分10
9秒前
彭于晏应助太清采纳,获得10
9秒前
iNk应助felix采纳,获得10
10秒前
归尘发布了新的文献求助10
11秒前
11秒前
暴躁的从露完成签到,获得积分10
12秒前
读二白完成签到,获得积分10
13秒前
13秒前
烟花应助Hey采纳,获得10
14秒前
14秒前
缥缈哈密瓜完成签到,获得积分10
14秒前
15秒前
DUAN应助xh采纳,获得10
16秒前
17秒前
糖醋花孙米完成签到,获得积分10
17秒前
17秒前
17秒前
爱听歌老1完成签到,获得积分10
17秒前
爆米花应助刻苦蚂蚁采纳,获得10
18秒前
123发布了新的文献求助10
18秒前
雨朵发布了新的文献求助10
18秒前
是小银鱼完成签到 ,获得积分10
18秒前
大模型应助俭朴的芝麻采纳,获得10
19秒前
asdfg完成签到,获得积分10
20秒前
21秒前
梦话完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295056
求助须知:如何正确求助?哪些是违规求助? 4444656
关于积分的说明 13834273
捐赠科研通 4328923
什么是DOI,文献DOI怎么找? 2376463
邀请新用户注册赠送积分活动 1371739
关于科研通互助平台的介绍 1336930