Joint Optimization for Cooperative Service-Caching, Computation-Offloading, and Resource-Allocations Over EH/MEC-Based Ultra-Dense Mobile Networks

计算机科学 计算卸载 资源配置 移动边缘计算 基站 分布式计算 计算机网络 网格 边缘计算 GSM演进的增强数据速率 服务器 电信 几何学 数学
作者
Zhian Chen,Fei Wang,Xi Zhang
标识
DOI:10.1109/icc45041.2023.10279783
摘要

Mobile edge-computing (MEC) enabled ultra-dense networks (UDNs), which merges edge-computing with UDNs, can provide enormous benefits, e.g., ultra-low latency. However, due to the ultra-dense deployment of small-cell base stations (SBSs), it becomes infeasible to just depend on the grid power for energy providing, and also it is challenging to jointly optimize service-caching, computation-offloading, and resource-allocation. Integrating energy-harvesting (EH) techniques into MEC-enabled UDNs, we investigate the joint optimization for cooperative service-caching, computation-offloading, and resource-allocation. In our considered UDNs, there exist a large number of EH-based mobile users (MUs) and a mixture of on-grid SBSs, powered by electric grid, and off-grid SBSs, powered by solar, radio frequency (RF) energy, etc. We formulate an energy minimization problem to minimize the sum of weighted energy consumption of all MUs and off-grid SBSs. Also, we develop a two-timescale based joint cooperative service-caching, computation-offloading, and resource-allocation scheme based on the hierarchical multiagent deep reinforcement learning (HMDRL). Using HMDRL, we first derive SBSs' cooperative service-caching policies which are updated in each time frame consisting of multiple time slots. Then, we derive MUs' and SBSs' computation-offloading policies and SBSs' computation resource-allocation policies, which are updated in each time slot. Finally, we validate and evaluate the performances of our proposed schemes through simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
AIT发布了新的文献求助10
3秒前
zl12345完成签到,获得积分10
4秒前
伶俐的代天完成签到,获得积分10
5秒前
wf0806发布了新的文献求助10
6秒前
6秒前
CipherSage应助老实的抽屉采纳,获得10
6秒前
任全强发布了新的文献求助10
8秒前
10秒前
11秒前
11秒前
AIT完成签到,获得积分10
13秒前
隐形曼青应助无限水杯采纳,获得10
14秒前
CodeCraft应助李小伟采纳,获得10
15秒前
枕月眠云发布了新的文献求助10
17秒前
劳永杰发布了新的文献求助10
17秒前
SciGPT应助ljx采纳,获得10
20秒前
ZZY完成签到 ,获得积分10
23秒前
23秒前
26秒前
27秒前
Lv完成签到,获得积分10
29秒前
30秒前
漂亮寻云发布了新的文献求助10
31秒前
李小伟发布了新的文献求助10
31秒前
笨笨善若发布了新的文献求助10
33秒前
桐桐应助劳永杰采纳,获得10
33秒前
36秒前
jane发布了新的文献求助10
36秒前
周林花完成签到,获得积分20
37秒前
Hello应助斯文采纳,获得10
38秒前
沐风发布了新的文献求助10
38秒前
39秒前
夏惋清完成签到 ,获得积分0
41秒前
万能图书馆应助亦风采纳,获得10
41秒前
Orange应助GGBAO采纳,获得10
42秒前
DirectorO发布了新的文献求助30
43秒前
Orange应助jane采纳,获得10
44秒前
CodeCraft应助在我梦里绕采纳,获得10
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967974
求助须知:如何正确求助?哪些是违规求助? 3513037
关于积分的说明 11166022
捐赠科研通 3248121
什么是DOI,文献DOI怎么找? 1794108
邀请新用户注册赠送积分活动 874854
科研通“疑难数据库(出版商)”最低求助积分说明 804602