Research on learning behavior patterns from the perspective of educational data mining: Evaluation, prediction and visualization

计算机科学 数据挖掘 教育数据挖掘 朴素贝叶斯分类器 主成分分析 聚类分析 C4.5算法 机器学习 随机森林 分类器(UML) 人工智能 统计的 透视图(图形) 数据集 支持向量机 数学 统计
作者
Guiyun Feng,Muwei Fan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121555-121555 被引量:10
标识
DOI:10.1016/j.eswa.2023.121555
摘要

The rapid growth of educational data creates the requirement to mine useful information from learning behavior patterns. The development of data mining technology makes educational data mining possible. The paper intends to use a public educational data set to study learning behavior patterns from the perspective of educational data mining, so as to promote the innovation of educational management. Firstly, in order to reduce the dimension of data analysis that facilitates the improvement in efficiency, principal component analysis is carried out to reduce the number of attributes in the data set. The significant attributes in the rotating principal component matrix rather than principal components which are not closely related to learning behavior patterns are extracted as the research variables. Then, a pseudo statistic is proposed to determine the number of clusters and the preprocessed data set is clustered according to the extracted attributes. The clustering results are applied to add class labels to the data, which is convenient for the later data training. Finally, six classification algorithms J48, K-Nearest Neighbor, Bayes Net, Random Forest, Support Vector Machine and Logit Boost are used to train the data with labels and build prediction models. At the same time, the performance and applicable conditions of six classifiers in terms of accuracy, efficiency, error, and so on are discussed and compared. It is found that the performance of the integrated algorithm is better than that of a single classifier. In the integrated algorithm, compared with Random Forest, the running time of Logit Boost is shorter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
贰鸟应助张继科keke采纳,获得10
1秒前
阿姜姜姜姜完成签到,获得积分10
1秒前
jenningseastera应助海夜采纳,获得20
1秒前
林飞云发布了新的文献求助10
2秒前
全智贤完成签到,获得积分10
3秒前
zy完成签到,获得积分10
3秒前
艾斯完成签到 ,获得积分10
4秒前
4秒前
XXJ完成签到,获得积分10
4秒前
psyYang完成签到,获得积分10
4秒前
4秒前
无心的怜烟完成签到 ,获得积分10
4秒前
自由世立发布了新的文献求助10
5秒前
无问西东发布了新的文献求助10
6秒前
卡卡西应助牛拉犁采纳,获得10
7秒前
7秒前
火星上冥茗完成签到 ,获得积分10
10秒前
hyl发布了新的文献求助10
10秒前
Sonia完成签到,获得积分10
10秒前
11秒前
在水一方应助芹菜采纳,获得10
11秒前
wanci应助小宁采纳,获得10
11秒前
11秒前
科目三应助qcy1997采纳,获得10
11秒前
11秒前
12秒前
12秒前
13秒前
13秒前
菠萝炒饭应助无糖气泡水采纳,获得10
13秒前
啊啊完成签到,获得积分10
13秒前
浅唱发布了新的文献求助10
15秒前
852应助舒适香露采纳,获得10
15秒前
Jm完成签到,获得积分10
15秒前
Superxx完成签到,获得积分10
16秒前
16秒前
鲤鱼谷蓝完成签到,获得积分10
16秒前
Su完成签到,获得积分10
17秒前
Zikc发布了新的文献求助30
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952180
求助须知:如何正确求助?哪些是违规求助? 3497683
关于积分的说明 11088472
捐赠科研通 3228269
什么是DOI,文献DOI怎么找? 1784720
邀请新用户注册赠送积分活动 868875
科研通“疑难数据库(出版商)”最低求助积分说明 801281