亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on learning behavior patterns from the perspective of educational data mining: Evaluation, prediction and visualization

计算机科学 数据挖掘 教育数据挖掘 朴素贝叶斯分类器 主成分分析 聚类分析 C4.5算法 机器学习 随机森林 分类器(UML) 人工智能 统计的 透视图(图形) 数据集 支持向量机 数学 统计
作者
Guiyun Feng,Muwei Fan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121555-121555 被引量:10
标识
DOI:10.1016/j.eswa.2023.121555
摘要

The rapid growth of educational data creates the requirement to mine useful information from learning behavior patterns. The development of data mining technology makes educational data mining possible. The paper intends to use a public educational data set to study learning behavior patterns from the perspective of educational data mining, so as to promote the innovation of educational management. Firstly, in order to reduce the dimension of data analysis that facilitates the improvement in efficiency, principal component analysis is carried out to reduce the number of attributes in the data set. The significant attributes in the rotating principal component matrix rather than principal components which are not closely related to learning behavior patterns are extracted as the research variables. Then, a pseudo statistic is proposed to determine the number of clusters and the preprocessed data set is clustered according to the extracted attributes. The clustering results are applied to add class labels to the data, which is convenient for the later data training. Finally, six classification algorithms J48, K-Nearest Neighbor, Bayes Net, Random Forest, Support Vector Machine and Logit Boost are used to train the data with labels and build prediction models. At the same time, the performance and applicable conditions of six classifiers in terms of accuracy, efficiency, error, and so on are discussed and compared. It is found that the performance of the integrated algorithm is better than that of a single classifier. In the integrated algorithm, compared with Random Forest, the running time of Logit Boost is shorter.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵的幻灵完成签到 ,获得积分10
4秒前
明昼发布了新的文献求助10
5秒前
6秒前
DduYy完成签到,获得积分10
7秒前
ferritin完成签到 ,获得积分10
9秒前
10秒前
JamesPei应助一见喜采纳,获得10
11秒前
明昼完成签到,获得积分10
12秒前
上官若男应助世界需要我采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
18秒前
21秒前
22秒前
悦耳冬萱完成签到 ,获得积分10
23秒前
24秒前
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
FashionBoy应助科研通管家采纳,获得10
25秒前
26秒前
28秒前
32秒前
39秒前
科目三应助爱撒娇的文博采纳,获得10
39秒前
KAZEN完成签到 ,获得积分10
42秒前
44秒前
可乐发布了新的文献求助10
49秒前
CipherSage应助LucyMartinez采纳,获得10
53秒前
李爱国应助菠萝采纳,获得10
53秒前
54秒前
56秒前
端庄亦巧发布了新的文献求助10
58秒前
浅蓝完成签到 ,获得积分10
59秒前
1分钟前
Re发布了新的文献求助10
1分钟前
kdjc完成签到 ,获得积分10
1分钟前
菠萝发布了新的文献求助10
1分钟前
共享精神应助QJQ采纳,获得10
1分钟前
abc完成签到 ,获得积分10
1分钟前
优秀的雨筠完成签到 ,获得积分10
1分钟前
syalonyui完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739102
求助须知:如何正确求助?哪些是违规求助? 5383779
关于积分的说明 15339426
捐赠科研通 4881827
什么是DOI,文献DOI怎么找? 2623950
邀请新用户注册赠送积分活动 1572640
关于科研通互助平台的介绍 1529390