哈达玛变换
克罗内克产品
克罗内克三角洲
数学
矩阵乘法
阿达玛积
离散哈特利变换
阿达玛矩阵
离散傅里叶变换(通用)
算法
乘法(音乐)
计算
快速傅里叶变换
离散正弦变换
离散数学
算术
分数阶傅立叶变换
组合数学
傅里叶变换
数学分析
量子力学
量子
傅里叶分析
物理
作者
Zi-Chen Fan,Di Li,Susanto Rahardja
出处
期刊:IEEE Signal Processing Letters
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:30: 1087-1091
标识
DOI:10.1109/lsp.2023.3305193
摘要
This paper introduces a novel discrete fractional transform termed as pure number discrete fractional complex Hadamard transform (PN-FCHT). The proposed PN-FCHT offers three advantages over the traditional discrete fractional Hadamard transform (FHT). Firstly, the higher-order PN-FCHT matrix exhibits the Self-Kronecker product structure, which allows for the recursive generation from the $2\times 2$ core PN-FCHT matrix. Secondly, it possesses two important properties for computation, i.e. pure number property. Lastly, compared to existing state-of-the-art fast FHT algorithms, the PN-FCHT can reduce the transform multiplication computational complexity by up to 80% and this results in a more efficient hardware implementation.
科研通智能强力驱动
Strongly Powered by AbleSci AI