Breast TransFG Plus: Transformer-based fine-grained classification model for breast cancer grading in Hematoxylin-Eosin stained pathological images

分级(工程) 乳腺癌 H&E染色 人工智能 乳腺肿瘤 计算机科学 医学 病态的 模式识别(心理学) 病理 内科学 癌症 染色 土木工程 工程类
作者
Zhencun Jiang,Zhicheng Dong,Jinfu Fan,Yang Yu,Yuanqing Xian,Zhongjie Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105284-105284
标识
DOI:10.1016/j.bspc.2023.105284
摘要

Breast cancer is one of the most common malignancies in women, and the pathological grading of breast cancer is very important for the prognosis of breast cancer. But classification of breast Hematoxylin-Eosin (HE) stained pathological images by deep learning for breast cancer grading is difficult due to morphological similarities between different grades. Therefore, it is essential to have an efficient and accurate method of breast cancer grading. In this paper, a transformer-based fine-grained classification model named Breast TransFG Plus is proposed for breast cancer grading. Targeting the widespread distribution of cells in breast HE stained pathological images, this paper proposes part selection module plus, which is a kind of key information extraction method based on matrix addition, and double head classification structure, which is a kind of dual stream network structure. And balanced sampling based on data augmentation is used in the training set. The proposed method has been evaluated on a public dataset and the classification accuracy, precision and recall on the test set are 99.39%, 99.18% and 99.59%, the number of parameters is 93 M. And it is proved that the proposed model is superior to previous studies by comparing with them. Breast TransFG Plus can achieve efficient and accurate breast cancer grading, and has the potential to meet clinical computer-aided diagnosis needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lebron完成签到,获得积分10
刚刚
Akim应助sssss采纳,获得10
1秒前
惊蛰完成签到 ,获得积分20
2秒前
三石发布了新的文献求助10
3秒前
深情安青应助tcl1998采纳,获得10
4秒前
4秒前
怡然沅完成签到,获得积分10
4秒前
阚曦完成签到,获得积分10
5秒前
6秒前
失眠的诗蕊应助Summer采纳,获得50
7秒前
青枣不甜发布了新的文献求助10
7秒前
馥日祎发布了新的文献求助10
7秒前
shuenghei完成签到,获得积分10
7秒前
8秒前
1x完成签到,获得积分10
11秒前
11秒前
科研通AI2S应助香蕉子骞采纳,获得10
11秒前
隐形曼青应助九九采纳,获得10
12秒前
626发布了新的文献求助10
12秒前
shuenghei发布了新的文献求助10
13秒前
月亮之下完成签到 ,获得积分10
14秒前
思源应助青枣不甜采纳,获得10
15秒前
Seeker完成签到 ,获得积分10
15秒前
天天快乐应助提莫大将军采纳,获得10
15秒前
17秒前
山水木完成签到,获得积分20
18秒前
18秒前
JoJo完成签到,获得积分10
20秒前
hhh发布了新的文献求助30
20秒前
屈初雪发布了新的文献求助10
22秒前
03210322完成签到 ,获得积分10
23秒前
23秒前
呆呆完成签到,获得积分10
23秒前
25秒前
ANT完成签到 ,获得积分10
25秒前
25秒前
Iuhob发布了新的文献求助10
27秒前
29秒前
书生完成签到,获得积分10
29秒前
不配.应助科研通管家采纳,获得10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148139
求助须知:如何正确求助?哪些是违规求助? 2799228
关于积分的说明 7833916
捐赠科研通 2456390
什么是DOI,文献DOI怎么找? 1307237
科研通“疑难数据库(出版商)”最低求助积分说明 628119
版权声明 601655