亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Model averaging for support vector classifier by cross-validation

加权 选型 支持向量机 估计员 计算机科学 铰链损耗 协变量 交叉验证 分类器(UML) 机器学习 选择(遗传算法) 理论(学习稳定性) 多种型号 数据挖掘 人工智能 数学 数学优化 算法 统计 放射科 医学
作者
Jiahui Zou,Chaoxia Yuan,Xinyu Zhang,Guohua Zou,Alan T. K. Wan
出处
期刊:Statistics and Computing [Springer Nature]
卷期号:33 (5) 被引量:2
标识
DOI:10.1007/s11222-023-10284-6
摘要

Support vector classification (SVC) is a well-known statistical technique for classification problems in machine learning and other fields. An important question for SVC is the selection of covariates (or features) for the model. Many studies have considered model selection methods. As is well-known, selecting one winning model over others can entail considerable instability in predictive performance due to model selection uncertainties. This paper advocates model averaging as an alternative approach, where estimates obtained from different models are combined in a weighted average. We propose a model weighting scheme and provide the theoretical underpinning for the proposed method. In particular, we prove that our proposed method yields a model average estimator that achieves the smallest hinge risk among all feasible combinations asymptotically. To remedy the computational burden due to a large number of feasible models, we propose a screening step to eliminate the uninformative features before combining the models. Results from real data applications and a simulation study show that the proposed method generally yields more accurate estimates than existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
1秒前
ceeray23应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
24秒前
拿起蜡笔小新完成签到 ,获得积分10
28秒前
42秒前
45秒前
49秒前
lazysheep关注了科研通微信公众号
49秒前
51秒前
52秒前
1分钟前
闪闪的梦柏完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
完美世界应助gbb采纳,获得10
1分钟前
1分钟前
树洞里的刺猬完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Cherish发布了新的文献求助10
1分钟前
科目三应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
执着的怜寒完成签到 ,获得积分10
2分钟前
情怀应助东京今夜下雪采纳,获得10
2分钟前
2分钟前
ANG完成签到 ,获得积分10
2分钟前
2分钟前
直率三问完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
jim完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
以七完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650948
求助须知:如何正确求助?哪些是违规求助? 4782232
关于积分的说明 15052807
捐赠科研通 4809729
什么是DOI,文献DOI怎么找? 2572530
邀请新用户注册赠送积分活动 1528569
关于科研通互助平台的介绍 1487549