FILNet: Fast Image-Based Indoor Localization Using an Anchor Control Network

特征(语言学) 人工智能 计算机科学 匹配(统计) 仿射变换 模式识别(心理学) 正确性 计算机视觉 树(集合论) Blossom算法 特征提取 数学 算法 数学分析 哲学 语言学 统计 纯数学
作者
Sikang Liu,Zhao Huang,Jiafeng Li,Anna Li,Xingru Huang
出处
期刊:Sensors [MDPI AG]
卷期号:23 (19): 8140-8140
标识
DOI:10.3390/s23198140
摘要

This paper designs a fast image-based indoor localization method based on an anchor control network (FILNet) to improve localization accuracy and shorten the duration of feature matching. Particularly, two stages are developed for the proposed algorithm. The offline stage is to construct an anchor feature fingerprint database based on the concept of an anchor control network. This introduces detailed surveys to infer anchor features according to the information of control anchors using the visual-inertial odometry (VIO) based on Google ARcore. In addition, an affine invariance enhancement algorithm based on feature multi-angle screening and supplementation is developed to solve the image perspective transformation problem and complete the feature fingerprint database construction. In the online stage, a fast spatial indexing approach is adopted to improve the feature matching speed by searching for active anchors and matching only anchor features around the active anchors. Further, to improve the correct matching rate, a homography matrix filter model is used to verify the correctness of feature matching, and the correct matching points are selected. Extensive experiments in real-world scenarios are performed to evaluate the proposed FILNet. The experimental results show that in terms of affine invariance, compared with the initial local features, FILNet significantly improves the recall of feature matching from 26% to 57% when the angular deviation is less than 60 degrees. In the image feature matching stage, compared with the initial K-D tree algorithm, FILNet significantly improves the efficiency of feature matching, and the average time of the test image dataset is reduced from 30.3 ms to 12.7 ms. In terms of localization accuracy, compared with the benchmark method based on image localization, FILNet significantly improves the localization accuracy, and the percentage of images with a localization error of less than 0.1m increases from 31.61% to 55.89%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱语芹完成签到 ,获得积分10
1秒前
G_G发布了新的文献求助10
3秒前
西瓜橙子完成签到,获得积分10
3秒前
萤火虫完成签到,获得积分10
3秒前
852应助心斋采纳,获得10
4秒前
Linda琳完成签到,获得积分10
5秒前
Memory完成签到,获得积分10
5秒前
窝窝头完成签到 ,获得积分10
5秒前
星辰大海应助Brenda采纳,获得10
5秒前
梦凡完成签到,获得积分10
5秒前
nn完成签到,获得积分10
5秒前
6秒前
赵一完成签到,获得积分10
6秒前
江海客发布了新的文献求助10
6秒前
孤独的大灰狼完成签到 ,获得积分10
6秒前
上善若水完成签到,获得积分10
6秒前
6秒前
李静完成签到,获得积分20
7秒前
畅快的长颈鹿完成签到,获得积分10
7秒前
zyf完成签到,获得积分10
8秒前
盛夏完成签到,获得积分10
8秒前
龙眼完成签到,获得积分10
8秒前
研友_24789完成签到,获得积分10
8秒前
Lion完成签到,获得积分10
9秒前
L7.完成签到,获得积分10
9秒前
callmefather发布了新的文献求助10
9秒前
酷波er应助帆帆帆采纳,获得10
10秒前
zyf给zyf的求助进行了留言
10秒前
ccx完成签到,获得积分10
11秒前
Caroline完成签到,获得积分10
12秒前
zhangxiaoqing完成签到,获得积分10
12秒前
123完成签到,获得积分10
13秒前
笨笨静竹发布了新的文献求助10
13秒前
13秒前
SCI来关注了科研通微信公众号
14秒前
踏实松鼠完成签到 ,获得积分10
14秒前
Frank完成签到 ,获得积分10
14秒前
Lucas应助wanghb616采纳,获得10
16秒前
艾泽拉斯的囚徒完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080494
捐赠科研通 4434084
什么是DOI,文献DOI怎么找? 2434382
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349