FILNet: Fast Image-Based Indoor Localization Using an Anchor Control Network

特征(语言学) 人工智能 计算机科学 匹配(统计) 仿射变换 模式识别(心理学) 正确性 计算机视觉 树(集合论) Blossom算法 特征提取 数学 算法 数学分析 哲学 语言学 统计 纯数学
作者
Sikang Liu,Zhao Huang,Jiafeng Li,Anna Li,Xingru Huang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (19): 8140-8140
标识
DOI:10.3390/s23198140
摘要

This paper designs a fast image-based indoor localization method based on an anchor control network (FILNet) to improve localization accuracy and shorten the duration of feature matching. Particularly, two stages are developed for the proposed algorithm. The offline stage is to construct an anchor feature fingerprint database based on the concept of an anchor control network. This introduces detailed surveys to infer anchor features according to the information of control anchors using the visual-inertial odometry (VIO) based on Google ARcore. In addition, an affine invariance enhancement algorithm based on feature multi-angle screening and supplementation is developed to solve the image perspective transformation problem and complete the feature fingerprint database construction. In the online stage, a fast spatial indexing approach is adopted to improve the feature matching speed by searching for active anchors and matching only anchor features around the active anchors. Further, to improve the correct matching rate, a homography matrix filter model is used to verify the correctness of feature matching, and the correct matching points are selected. Extensive experiments in real-world scenarios are performed to evaluate the proposed FILNet. The experimental results show that in terms of affine invariance, compared with the initial local features, FILNet significantly improves the recall of feature matching from 26% to 57% when the angular deviation is less than 60 degrees. In the image feature matching stage, compared with the initial K-D tree algorithm, FILNet significantly improves the efficiency of feature matching, and the average time of the test image dataset is reduced from 30.3 ms to 12.7 ms. In terms of localization accuracy, compared with the benchmark method based on image localization, FILNet significantly improves the localization accuracy, and the percentage of images with a localization error of less than 0.1m increases from 31.61% to 55.89%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
JHL完成签到,获得积分10
1秒前
qq16发布了新的文献求助10
1秒前
Dotgene完成签到,获得积分10
1秒前
小芙爱雪碧完成签到 ,获得积分10
1秒前
1秒前
孙福禄应助quan采纳,获得10
2秒前
2秒前
Mzhao完成签到,获得积分10
3秒前
3秒前
3秒前
疯狂的虔完成签到,获得积分10
3秒前
5秒前
CipherSage应助右右采纳,获得10
5秒前
玉衡发布了新的文献求助10
5秒前
yao chen完成签到,获得积分10
5秒前
朵拉完成签到,获得积分10
5秒前
由清涟完成签到,获得积分10
6秒前
Drhan完成签到,获得积分10
6秒前
FashionBoy应助断数循环采纳,获得10
6秒前
姣妹崽完成签到,获得积分10
6秒前
马一凡完成签到,获得积分0
6秒前
上官若男应助lan199623采纳,获得10
7秒前
俗人完成签到,获得积分10
7秒前
cangye发布了新的文献求助10
7秒前
Dotgene发布了新的文献求助10
7秒前
wanci应助CO2采纳,获得10
7秒前
joker发布了新的文献求助10
7秒前
SciGPT应助小超采纳,获得10
7秒前
7秒前
malubest完成签到,获得积分10
8秒前
华仔应助朴素的玫瑰采纳,获得30
8秒前
开心的饼干完成签到,获得积分10
9秒前
不会搞科研完成签到,获得积分0
9秒前
9秒前
9秒前
今年我必胖20斤完成签到,获得积分10
9秒前
9秒前
nini完成签到,获得积分10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600