亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FILNet: Fast Image-Based Indoor Localization Using an Anchor Control Network

特征(语言学) 人工智能 计算机科学 匹配(统计) 仿射变换 模式识别(心理学) 正确性 计算机视觉 树(集合论) Blossom算法 特征提取 数学 算法 数学分析 哲学 语言学 统计 纯数学
作者
Sikang Liu,Zhao Huang,Jiafeng Li,Anna Li,Xingru Huang
出处
期刊:Sensors [MDPI AG]
卷期号:23 (19): 8140-8140
标识
DOI:10.3390/s23198140
摘要

This paper designs a fast image-based indoor localization method based on an anchor control network (FILNet) to improve localization accuracy and shorten the duration of feature matching. Particularly, two stages are developed for the proposed algorithm. The offline stage is to construct an anchor feature fingerprint database based on the concept of an anchor control network. This introduces detailed surveys to infer anchor features according to the information of control anchors using the visual-inertial odometry (VIO) based on Google ARcore. In addition, an affine invariance enhancement algorithm based on feature multi-angle screening and supplementation is developed to solve the image perspective transformation problem and complete the feature fingerprint database construction. In the online stage, a fast spatial indexing approach is adopted to improve the feature matching speed by searching for active anchors and matching only anchor features around the active anchors. Further, to improve the correct matching rate, a homography matrix filter model is used to verify the correctness of feature matching, and the correct matching points are selected. Extensive experiments in real-world scenarios are performed to evaluate the proposed FILNet. The experimental results show that in terms of affine invariance, compared with the initial local features, FILNet significantly improves the recall of feature matching from 26% to 57% when the angular deviation is less than 60 degrees. In the image feature matching stage, compared with the initial K-D tree algorithm, FILNet significantly improves the efficiency of feature matching, and the average time of the test image dataset is reduced from 30.3 ms to 12.7 ms. In terms of localization accuracy, compared with the benchmark method based on image localization, FILNet significantly improves the localization accuracy, and the percentage of images with a localization error of less than 0.1m increases from 31.61% to 55.89%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是谁还没睡完成签到 ,获得积分10
16秒前
Fluoxtine发布了新的文献求助10
34秒前
学术交流高完成签到 ,获得积分10
34秒前
凡舍完成签到 ,获得积分10
44秒前
搜集达人应助dawn采纳,获得10
58秒前
1分钟前
dawn完成签到,获得积分20
1分钟前
dawn发布了新的文献求助10
1分钟前
1分钟前
汉堡包应助Fluoxtine采纳,获得10
1分钟前
xixi发布了新的文献求助10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
kuoping完成签到,获得积分0
1分钟前
1分钟前
机灵自中完成签到,获得积分10
1分钟前
Stellarshi517发布了新的文献求助20
1分钟前
2分钟前
科研通AI6.1应助xixi采纳,获得10
2分钟前
lyw发布了新的文献求助10
2分钟前
田様应助Stellarshi517采纳,获得20
2分钟前
2分钟前
kuiuLinvk发布了新的文献求助10
2分钟前
2分钟前
kuiuLinvk完成签到,获得积分10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
采薇发布了新的文献求助10
3分钟前
3分钟前
科研通AI6.1应助小博采纳,获得10
3分钟前
归尘发布了新的文献求助10
3分钟前
3分钟前
彭于晏应助凛玖niro采纳,获得10
3分钟前
Stellarshi517发布了新的文献求助20
3分钟前
3分钟前
lanxinyue应助科研通管家采纳,获得10
3分钟前
3分钟前
lanxinyue应助科研通管家采纳,获得10
3分钟前
lanxinyue应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788568
求助须知:如何正确求助?哪些是违规求助? 5709401
关于积分的说明 15473692
捐赠科研通 4916583
什么是DOI,文献DOI怎么找? 2646482
邀请新用户注册赠送积分活动 1594146
关于科研通互助平台的介绍 1548577