LIVS: a tightly coupled LiDAR, IMU, and camera-based SLAM system under scene degradation

计算机视觉 计算机科学 同时定位和映射 人工智能 惯性测量装置 因子图 稳健性(进化) 激光雷达 机器人 移动机器人 遥感 地理 生物化学 化学 解码方法 基因 电信
作者
Guangtao Cheng,Peiqing Li,Qipeng Li,Debao Wang,Zhuoran Li,Zhiwei Wang
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (11): 115028-115028
标识
DOI:10.1088/1402-4896/ad859f
摘要

Abstract In increasingly complex environments, single-sensor-based SLAM systems face scene degradation problems such as strong light, dynamic obstacle interference, and lack of structural features in the environment, which severely constrain the localization accuracy and mapping effectiveness of SLAM systems. To address this problem, this paper proposes a tightly coupled laser-IMU-visual SLAM system (LIVS) based on factor graph optimization. LIVS consists of two subsystems: the laser inertial system (LIS) and the visual inertial system (VIS). The pose estimation of the LIS can provide an initialization for the VIS; LiDAR suffers scene degradation in environments lacking structural features, while the VIS provides better constraints for Lidar in this environment. Firstly, a method of selecting keyframes based on ORB features and the relative motion of the mobile robot is proposed as a means of improving the positioning accuracy and tracking ability of the system in the case of strenuous motion, and a strategy of local sliding window optimization is adopted to effectively improve the real-time performance and robustness of the system. Meanwhile, in order to further improve the global map consistency and positioning accuracy, a hybrid closed-loop detection method based on laser and vision is proposed, which utilizes the geometrical features of laser and the image features of vision to accomplish the hybrid closed-loop detection. Secondly, the laser inertia factor, IMU pre-integration factor, vision inertia factor, and closed-loop factor are globally optimized in a factor map framework to achieve accurate estimation of the robot pose. Finally, this paper presents experimental evaluations on both public and homemade datasets and compares the performance of the proposed algorithm with that of other algorithms. Experimental results show that the algorithm in this paper exhibits better performance in both localization accuracy and mapping effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
Orange应助HH采纳,获得10
2秒前
黄臻发布了新的文献求助10
2秒前
3秒前
减肥法发布了新的文献求助10
4秒前
4秒前
研友_n0kqxL完成签到,获得积分10
4秒前
HQQ发布了新的文献求助10
4秒前
microlite完成签到,获得积分10
4秒前
言言言言发布了新的文献求助30
5秒前
量子星尘发布了新的文献求助10
5秒前
2425发布了新的文献求助50
5秒前
明亮的薯片完成签到,获得积分10
5秒前
不摸鱼轩完成签到,获得积分10
5秒前
东东完成签到 ,获得积分10
5秒前
归尘发布了新的文献求助10
5秒前
Aeon发布了新的文献求助10
6秒前
7秒前
妮可罗宾完成签到 ,获得积分10
8秒前
8秒前
9秒前
含糊的丹彤关注了科研通微信公众号
9秒前
fovviy完成签到,获得积分10
10秒前
chu完成签到,获得积分10
10秒前
专注的问寒应助走四方采纳,获得20
10秒前
科目三应助xie采纳,获得10
12秒前
科研通AI6应助减肥法采纳,获得10
12秒前
13秒前
13秒前
13秒前
小蘑菇应助Leo000007采纳,获得10
14秒前
guojinyu发布了新的文献求助30
14秒前
liuliu梅完成签到 ,获得积分10
14秒前
14秒前
归尘发布了新的文献求助10
14秒前
15秒前
乐乐应助调皮的巧凡采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637232
求助须知:如何正确求助?哪些是违规求助? 4743065
关于积分的说明 14998575
捐赠科研通 4795529
什么是DOI,文献DOI怎么找? 2561991
邀请新用户注册赠送积分活动 1521497
关于科研通互助平台的介绍 1481513