亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LIVS: a tightly coupled LiDAR, IMU, and camera-based SLAM system under scene degradation

计算机视觉 计算机科学 同时定位和映射 人工智能 惯性测量装置 因子图 稳健性(进化) 激光雷达 机器人 移动机器人 遥感 地理 生物化学 化学 解码方法 基因 电信
作者
Guangtao Cheng,Peiqing Li,Qipeng Li,Debao Wang,Zhuoran Li,Zhiwei Wang
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (11): 115028-115028
标识
DOI:10.1088/1402-4896/ad859f
摘要

Abstract In increasingly complex environments, single-sensor-based SLAM systems face scene degradation problems such as strong light, dynamic obstacle interference, and lack of structural features in the environment, which severely constrain the localization accuracy and mapping effectiveness of SLAM systems. To address this problem, this paper proposes a tightly coupled laser-IMU-visual SLAM system (LIVS) based on factor graph optimization. LIVS consists of two subsystems: the laser inertial system (LIS) and the visual inertial system (VIS). The pose estimation of the LIS can provide an initialization for the VIS; LiDAR suffers scene degradation in environments lacking structural features, while the VIS provides better constraints for Lidar in this environment. Firstly, a method of selecting keyframes based on ORB features and the relative motion of the mobile robot is proposed as a means of improving the positioning accuracy and tracking ability of the system in the case of strenuous motion, and a strategy of local sliding window optimization is adopted to effectively improve the real-time performance and robustness of the system. Meanwhile, in order to further improve the global map consistency and positioning accuracy, a hybrid closed-loop detection method based on laser and vision is proposed, which utilizes the geometrical features of laser and the image features of vision to accomplish the hybrid closed-loop detection. Secondly, the laser inertia factor, IMU pre-integration factor, vision inertia factor, and closed-loop factor are globally optimized in a factor map framework to achieve accurate estimation of the robot pose. Finally, this paper presents experimental evaluations on both public and homemade datasets and compares the performance of the proposed algorithm with that of other algorithms. Experimental results show that the algorithm in this paper exhibits better performance in both localization accuracy and mapping effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无心的善愁完成签到 ,获得积分10
1秒前
冷酷愚志完成签到,获得积分10
2秒前
李健应助年年年年采纳,获得10
2秒前
许伟洋完成签到 ,获得积分10
2秒前
汉堡包应助怕孤单的石头采纳,获得10
4秒前
不安的未来完成签到,获得积分10
7秒前
遥知马完成签到,获得积分10
9秒前
9秒前
10秒前
科研通AI6.1应助Kz采纳,获得10
13秒前
冰汤葫芦发布了新的文献求助10
16秒前
桃子e发布了新的文献求助10
17秒前
酷炫的爆米花完成签到,获得积分10
21秒前
尤诺完成签到 ,获得积分10
22秒前
无名子完成签到 ,获得积分10
23秒前
鱼蛋完成签到,获得积分20
24秒前
25秒前
26秒前
鱼蛋发布了新的文献求助30
30秒前
爆米花应助小鱼采纳,获得10
30秒前
归宁发布了新的文献求助10
33秒前
斯文梦寒完成签到 ,获得积分10
34秒前
sophy发布了新的文献求助20
36秒前
37秒前
紧张的友灵完成签到,获得积分10
37秒前
韩祖完成签到 ,获得积分10
39秒前
39秒前
42秒前
44秒前
44秒前
陆康完成签到 ,获得积分10
45秒前
Ding完成签到 ,获得积分20
45秒前
47秒前
小鱼发布了新的文献求助10
47秒前
47秒前
49秒前
lsc完成签到 ,获得积分10
51秒前
luan完成签到 ,获得积分10
51秒前
量子星尘发布了新的文献求助10
52秒前
12A完成签到,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779750
求助须知:如何正确求助?哪些是违规求助? 5649480
关于积分的说明 15452248
捐赠科研通 4910842
什么是DOI,文献DOI怎么找? 2642978
邀请新用户注册赠送积分活动 1590629
关于科研通互助平台的介绍 1545067