LIVS: A tightly coupled LiDAR, IMU, and camera-based SLAM system under scene degradation

计算机视觉 计算机科学 同时定位和映射 人工智能 惯性测量装置 因子图 稳健性(进化) 激光雷达 机器人 移动机器人 遥感 地理 基因 电信 解码方法 化学 生物化学
作者
Guangtao Cheng,Peiqing Li,Qipeng Li,Debao Wang,Zhuoran Li,Zhiwei Wang
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (11): 115028-115028
标识
DOI:10.1088/1402-4896/ad859f
摘要

Abstract In increasingly complex environments, single-sensor-based SLAM systems face scene degradation problems such as strong light, dynamic obstacle interference, and lack of structural features in the environment, which severely constrain the localization accuracy and mapping effectiveness of SLAM systems. To address this problem, this paper proposes a tightly coupled laser-IMU-visual SLAM system (LIVS) based on factor graph optimization. LIVS consists of two subsystems: the laser inertial system (LIS) and the visual inertial system (VIS). The pose estimation of the LIS can provide an initialization for the VIS; LiDAR suffers scene degradation in environments lacking structural features, while the VIS provides better constraints for Lidar in this environment. Firstly, a method of selecting keyframes based on ORB features and the relative motion of the mobile robot is proposed as a means of improving the positioning accuracy and tracking ability of the system in the case of strenuous motion, and a strategy of local sliding window optimization is adopted to effectively improve the real-time performance and robustness of the system. Meanwhile, in order to further improve the global map consistency and positioning accuracy, a hybrid closed-loop detection method based on laser and vision is proposed, which utilizes the geometrical features of laser and the image features of vision to accomplish the hybrid closed-loop detection. Secondly, the laser inertia factor, IMU pre-integration factor, vision inertia factor, and closed-loop factor are globally optimized in a factor map framework to achieve accurate estimation of the robot pose. Finally, this paper presents experimental evaluations on both public and homemade datasets and compares the performance of the proposed algorithm with that of other algorithms. Experimental results show that the algorithm in this paper exhibits better performance in both localization accuracy and mapping effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白斯特发布了新的文献求助10
刚刚
1259671587完成签到,获得积分10
1秒前
2秒前
2秒前
LLQ完成签到,获得积分10
2秒前
汉堡包应助邢凡柔采纳,获得10
2秒前
现代发布了新的文献求助10
3秒前
hellohql完成签到 ,获得积分10
4秒前
佳佳应助jiayan111采纳,获得10
5秒前
领导范儿应助斑马还没睡采纳,获得10
5秒前
李健的小迷弟应助yxy采纳,获得10
6秒前
无花果应助神经小丸子采纳,获得10
7秒前
hellohql关注了科研通微信公众号
7秒前
小石头发布了新的文献求助10
7秒前
7秒前
动听秋灵完成签到,获得积分20
7秒前
7秒前
8秒前
8秒前
曲书文完成签到,获得积分10
10秒前
11秒前
燕玲发布了新的文献求助10
11秒前
传奇3应助直率的高烽采纳,获得10
12秒前
QL发布了新的文献求助10
12秒前
羊羊羊完成签到 ,获得积分10
12秒前
SYSUer发布了新的文献求助10
13秒前
喝水吗发布了新的文献求助10
13秒前
可可完成签到,获得积分10
14秒前
可可完成签到,获得积分10
15秒前
15秒前
香蕉觅云应助柒_l采纳,获得10
16秒前
邢凡柔发布了新的文献求助10
16秒前
16秒前
烟花应助April采纳,获得10
17秒前
shinysparrow应助jerry采纳,获得200
17秒前
积极老黑完成签到,获得积分10
18秒前
18秒前
孙小雨发布了新的文献求助10
20秒前
somin应助动听秋灵采纳,获得10
20秒前
积极老黑发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959583
求助须知:如何正确求助?哪些是违规求助? 3505844
关于积分的说明 11126416
捐赠科研通 3237765
什么是DOI,文献DOI怎么找? 1789326
邀请新用户注册赠送积分活动 871669
科研通“疑难数据库(出版商)”最低求助积分说明 802963