LIVS: A tightly coupled LiDAR, IMU, and camera-based SLAM system under scene degradation

计算机视觉 计算机科学 同时定位和映射 人工智能 惯性测量装置 因子图 稳健性(进化) 激光雷达 机器人 移动机器人 遥感 地理 基因 电信 解码方法 化学 生物化学
作者
Guangtao Cheng,Peiqing Li,Qipeng Li,Debao Wang,Zhuoran Li,Zhiwei Wang
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (11): 115028-115028
标识
DOI:10.1088/1402-4896/ad859f
摘要

Abstract In increasingly complex environments, single-sensor-based SLAM systems face scene degradation problems such as strong light, dynamic obstacle interference, and lack of structural features in the environment, which severely constrain the localization accuracy and mapping effectiveness of SLAM systems. To address this problem, this paper proposes a tightly coupled laser-IMU-visual SLAM system (LIVS) based on factor graph optimization. LIVS consists of two subsystems: the laser inertial system (LIS) and the visual inertial system (VIS). The pose estimation of the LIS can provide an initialization for the VIS; LiDAR suffers scene degradation in environments lacking structural features, while the VIS provides better constraints for Lidar in this environment. Firstly, a method of selecting keyframes based on ORB features and the relative motion of the mobile robot is proposed as a means of improving the positioning accuracy and tracking ability of the system in the case of strenuous motion, and a strategy of local sliding window optimization is adopted to effectively improve the real-time performance and robustness of the system. Meanwhile, in order to further improve the global map consistency and positioning accuracy, a hybrid closed-loop detection method based on laser and vision is proposed, which utilizes the geometrical features of laser and the image features of vision to accomplish the hybrid closed-loop detection. Secondly, the laser inertia factor, IMU pre-integration factor, vision inertia factor, and closed-loop factor are globally optimized in a factor map framework to achieve accurate estimation of the robot pose. Finally, this paper presents experimental evaluations on both public and homemade datasets and compares the performance of the proposed algorithm with that of other algorithms. Experimental results show that the algorithm in this paper exhibits better performance in both localization accuracy and mapping effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田田圈完成签到 ,获得积分10
刚刚
1秒前
1秒前
李小二完成签到,获得积分10
1秒前
李海洋发布了新的文献求助10
1秒前
1秒前
ifast完成签到 ,获得积分10
1秒前
Eatch完成签到,获得积分10
2秒前
刘颖发布了新的文献求助10
2秒前
2秒前
ll完成签到,获得积分10
2秒前
曾泓跃完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
pluto应助ChaseY采纳,获得10
4秒前
4秒前
4秒前
小公完成签到,获得积分10
4秒前
Riggle G完成签到,获得积分10
4秒前
513发布了新的文献求助10
5秒前
6秒前
李小二发布了新的文献求助10
6秒前
ljy完成签到 ,获得积分10
6秒前
momomi完成签到,获得积分10
6秒前
科研通AI6应助jun采纳,获得10
6秒前
小汪汪完成签到,获得积分10
7秒前
搜集达人应助智勇双全采纳,获得10
8秒前
8秒前
文心发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
monoklatt发布了新的文献求助10
8秒前
9秒前
星空点点完成签到,获得积分10
9秒前
9秒前
ddddansu发布了新的文献求助10
9秒前
10秒前
小公发布了新的文献求助20
11秒前
11秒前
华仔应助Sandy采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4616113
求助须知:如何正确求助?哪些是违规求助? 4019457
关于积分的说明 12442484
捐赠科研通 3702637
什么是DOI,文献DOI怎么找? 2041737
邀请新用户注册赠送积分活动 1074341
科研通“疑难数据库(出版商)”最低求助积分说明 957952