Reed-Inspired Three-Dimensional Printed Microcolumn Array Reinforced Hierarchically Structured Composites for Efficient Noise Reduction

材料科学 复合数 复合材料 降噪系数 多孔性 隔音 吸收(声学) 气凝胶 声压 噪音(视频) 声学 计算机科学 物理 图像(数学) 人工智能
作者
Fanchao Liang,Lingjie Yu,Yinchong Peng,Yuyang Zhu,Meng Jia-guang,Haodong Ma,Wanwan He,Jianglong Chen,Yaming Liu,Yongzhen Wang,Yang Dai,Chao Zhi
出处
期刊:ACS applied polymer materials [American Chemical Society]
卷期号:6 (17): 10706-10717
标识
DOI:10.1021/acsapm.4c01852
摘要

Against the background that noise pollution has become a global problem, it is a challenge to prepare acoustic functional materials that combine strong low-frequency sound absorption at low thicknesses with excellent mechanical and thermal insulation properties. Inspired by natural reed, a unique microcolumn array was three-dimensional printed by stereolithography (SLA) and combined with sodium alginate aerogel (SA) and polyurethane (PU) foam to design a highly efficient acoustic composite (PC-FMPPL composite), featuring both "cavity-like" and "filled microperforated plate-like" structures. The combination of multiple sound-absorption mechanisms including resonance and porous sound absorption, along with the cavity-like structure, contributes to the excellent sound-absorption performance of this composite material, even at low thickness. Specifically, the noise reduction coefficient per unit thickness of the PC-FMPPL composite exceeds that of most reported acoustic materials. Furthermore, the PC-FMPPL composite exhibits a low thermal conductivity of 0.036 W m–1·K–1 due to their intricate porous structure. Moreover, the microcolumn array provides support and resilience, resulting in excellent recovery and stability of the PC-FMPPL composite after 50 compression cycles. These favorable properties suggest promising applications for this highly efficient low-frequency acoustic composite in various fields, including architecture, transportation, and engineering. In addition, the proposed machine-learning-based sound-pressure prediction method for laminated composite offers the significant advantage of fast prediction speed (the trained machine-learning model predicts sound-pressure distribution of materials with different thickness ratios in just 0.4 s) while ensuring high accuracy, providing empirical support for predicting the acoustic performance of various types of laminated materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛轧唐完成签到,获得积分10
5秒前
bkagyin应助优美一斩采纳,获得10
6秒前
小窦关注了科研通微信公众号
6秒前
852应助theforth采纳,获得10
7秒前
好运連連完成签到,获得积分10
7秒前
bbh完成签到,获得积分10
8秒前
Singularity应助临水思长采纳,获得10
11秒前
英姑应助zsm采纳,获得10
11秒前
天天快乐应助dandiaojun采纳,获得10
12秒前
bkagyin应助和谐乐儿采纳,获得20
13秒前
14秒前
bbh发布了新的文献求助20
16秒前
车厘子发布了新的文献求助10
18秒前
20秒前
小窦发布了新的文献求助10
22秒前
22秒前
23秒前
24秒前
缇娜发布了新的文献求助10
26秒前
超级觅风完成签到,获得积分10
27秒前
27秒前
和谐乐儿发布了新的文献求助20
27秒前
1111发布了新的文献求助10
29秒前
Owen应助车厘子采纳,获得10
31秒前
32秒前
感动的忆枫完成签到,获得积分10
33秒前
鱼洞完成签到,获得积分10
34秒前
852应助胡萝卜icc采纳,获得10
35秒前
37秒前
yjn发布了新的文献求助10
38秒前
39秒前
端庄毛巾完成签到,获得积分10
40秒前
潇洒的煜完成签到,获得积分20
40秒前
橘子发布了新的文献求助10
42秒前
43秒前
幸福大白发布了新的文献求助10
43秒前
44秒前
44秒前
田様应助黄奥龙采纳,获得10
46秒前
46秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999530
求助须知:如何正确求助?哪些是违规求助? 3538968
关于积分的说明 11275514
捐赠科研通 3277819
什么是DOI,文献DOI怎么找? 1807686
邀请新用户注册赠送积分活动 884100
科研通“疑难数据库(出版商)”最低求助积分说明 810138