Multi-armed Bandit Experimental Design: Online Decision-Making and Adaptive Inference

推论 计算机科学 多武装匪徒 人工智能 运筹学 机器学习 数学 后悔
作者
David Simchi‐Levi,Chonghuan Wang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2023.00492
摘要

Multi-armed bandit has been well known for its efficiency in online decision-making in terms of minimizing the loss of the participants’ welfare during experiments (i.e., the regret). In clinical trials and many other scenarios, the statistical power of inferring the treatment effects (i.e., the gaps between the mean outcomes of different arms) is also crucial. Nevertheless, minimizing the regret entails harming the statistical power of estimating the treatment effect because the observations from some arms can be limited. In this paper, we investigate the trade-off between efficiency and statistical power by casting the multi-armed bandit experimental design into a minimax multi-objective optimization problem. We introduce the concept of Pareto optimality to mathematically characterize the situation in which neither the statistical power nor the efficiency can be improved without degrading the other. We derive a useful sufficient and necessary condition for the Pareto optimal solutions to the minimax multi-objective optimization problem. Additionally, we design an effective Pareto optimal multi-armed bandit experiment that can be tailored to different levels of the trade-off between the two objectives. Moreover, we extend the design and analysis to the setting where the outcome of each arm consists of an adversarial baseline reward and a stochastic treatment effect, demonstrating the robustness of our design. Finally, motivated by clinical trials, we examine the setting where the employed experiment must split the experimental units into a small number of batches, and we propose a flexible Pareto optimal design. This paper was accepted by George Shanthikumar, data science. Funding: The authors thank the Massachusetts Institute of Technology (MIT)-IBM partnership in Artificial Intelligence and the MIT Data Science Laboratory for support. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.00492 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zixian发布了新的文献求助10
1秒前
简行完成签到 ,获得积分10
1秒前
save完成签到,获得积分10
1秒前
2秒前
iu完成签到,获得积分10
3秒前
LOVER完成签到 ,获得积分10
5秒前
巧克力酱完成签到 ,获得积分0
5秒前
科研通AI5应助傲娇文博采纳,获得10
6秒前
醉翁完成签到,获得积分10
6秒前
6秒前
LAL百分组合应助唧唧采纳,获得20
6秒前
老甘完成签到 ,获得积分10
6秒前
Chem34完成签到,获得积分10
7秒前
科研通AI5应助wwww采纳,获得10
7秒前
美好送终完成签到,获得积分10
10秒前
10秒前
11秒前
yangyang发布了新的文献求助10
11秒前
小庄完成签到,获得积分10
12秒前
SYLH应助舒适路人采纳,获得10
12秒前
毕业发布了新的文献求助10
12秒前
系统提示完成签到,获得积分10
13秒前
14秒前
田様应助wanglu采纳,获得10
14秒前
脑洞疼应助歪比巴卜采纳,获得10
15秒前
WFLLL完成签到,获得积分10
16秒前
一个橡果完成签到,获得积分10
17秒前
大鱼完成签到 ,获得积分10
18秒前
傲娇文博发布了新的文献求助10
19秒前
孤海未蓝完成签到,获得积分10
19秒前
22秒前
山月完成签到,获得积分10
22秒前
菜菜Cc发布了新的文献求助10
22秒前
22秒前
23秒前
SYLH应助舒适路人采纳,获得10
24秒前
欣喜宛亦完成签到 ,获得积分10
25秒前
嘻嘻哈哈完成签到 ,获得积分10
26秒前
26秒前
wanglu发布了新的文献求助10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Introduction to Micromechanics and Nanomechanics 2nd Edition 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3535434
求助须知:如何正确求助?哪些是违规求助? 3113877
关于积分的说明 9313974
捐赠科研通 2811887
什么是DOI,文献DOI怎么找? 1544461
邀请新用户注册赠送积分活动 719442
科研通“疑难数据库(出版商)”最低求助积分说明 711431