化学
催化作用
双功能
杂原子
路易斯酸
热解
催化重整
分解
双功能催化剂
加氢脱硫
有机化学
化学工程
烷基
工程类
作者
Jin Seok,Nhat-Long Phan,Jeong‐Chul Kim,Hyeyoung Shin,Minkee Choi
摘要
Pyrolysis-based plastic chemical recycling has gained significant industrial attention due to its advantage of eliminating complex plastic sorting processes. However, plastic pyrolysis oil contains various components that require stringent removal before subsequent processes. In particular, Cl compounds originating from the decomposition of poly(vinyl chloride) can cause serious corrosion of reactors and catalyst deactivation in downstream processes. While extensive research has been conducted on the removal of other heteroatoms (S, N, and O) from organic compounds via hydrotreating, studies on the removal of Cl have been scarce. In this study, hydrodechlorination over Pt catalysts on various supports is comprehensively investigated using 1,2-dichloroethane as a model reactant. Our results demonstrate that Pt on γ-Al2O3 can exhibit exceptionally high catalytic activity compared to those on other supports due to a distinct bifunctional mechanism. Rigorous studies reveal that the Lewis acidic pentacoordinated Al sites of γ-Al2O3 activate C–Cl bonds, whereas Pt activates H2 and provides spillover H to remove Cl as HCl. The bifunctional mechanism enables the minimized use of precious Pt (<0.1 wt %) to achieve high activity. Pt/γ-Al2O3 also allows for efficient Cl removal (96.8%) with high stability in treating waste plastic pyrolysis oil containing 7500 ppm of Cl.
科研通智能强力驱动
Strongly Powered by AbleSci AI