READRetro: natural product biosynthesis predicting with retrieval‐augmented dual‐view retrosynthesis

回顾性分析 对偶(语法数字) 天然产物 代谢途径 计算生物学 计算机科学 生物 化学 生物化学 新陈代谢 艺术 全合成 文学类 有机化学
作者
Taein Kim,Seul Lee,Yejin Kwak,Min‐Soo Choi,Jeongbin Park,Sung Ju Hwang,Sang‐Gyu Kim
出处
期刊:New Phytologist [Wiley]
卷期号:243 (6): 2512-2527 被引量:2
标识
DOI:10.1111/nph.20012
摘要

Summary Plants, as a sessile organism, produce various secondary metabolites to interact with the environment. These chemicals have fascinated the plant science community because of their ecological significance and notable biological activity. However, predicting the complete biosynthetic pathways from target molecules to metabolic building blocks remains a challenge. Here, we propose retrieval‐augmented dual‐view retrosynthesis (READRetro) as a practical bio‐retrosynthesis tool to predict the biosynthetic pathways of plant natural products. Conventional bio‐retrosynthesis models have been limited in their ability to predict biosynthetic pathways for natural products. READRetro was optimized for the prediction of complex metabolic pathways by incorporating cutting‐edge deep learning architectures, an ensemble approach, and two retrievers. Evaluation of single‐ and multi‐step retrosynthesis showed that each component of READRetro significantly improved its ability to predict biosynthetic pathways. READRetro was also able to propose the known pathways of secondary metabolites such as monoterpene indole alkaloids and the unknown pathway of menisdaurilide, demonstrating its applicability to real‐world bio‐retrosynthesis of plant natural products. For researchers interested in the biosynthesis and production of secondary metabolites, a user‐friendly website ( https://readretro.net ) and the open‐source code of READRetro have been made available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助VERY采纳,获得10
1秒前
1秒前
2秒前
热心的曼容完成签到,获得积分20
6秒前
6秒前
7秒前
peng发布了新的文献求助10
7秒前
8秒前
10秒前
11秒前
华仔应助huajinoob采纳,获得10
11秒前
斯文败类应助世界和平采纳,获得10
12秒前
VERY发布了新的文献求助10
13秒前
鸭毛完成签到,获得积分10
14秒前
CJR发布了新的文献求助10
14秒前
Lucas应助Lorain采纳,获得10
14秒前
嗯哼应助英勇的鼠标采纳,获得20
14秒前
14秒前
无花果应助Lazarus_x采纳,获得10
16秒前
16秒前
17秒前
熠旅完成签到,获得积分10
17秒前
风中的以山完成签到,获得积分10
17秒前
NexusExplorer应助peng采纳,获得10
20秒前
俊秀的汉堡完成签到,获得积分10
20秒前
20秒前
VERY完成签到,获得积分20
21秒前
桐桐应助啦啦啦采纳,获得10
22秒前
sunzhou2008完成签到,获得积分10
24秒前
jianjiao发布了新的文献求助20
24秒前
海4015应助胡说八道采纳,获得10
25秒前
穆紫应助吴明轩采纳,获得10
26秒前
lzk完成签到,获得积分10
26秒前
27秒前
星辰大海应助zzzsss采纳,获得10
29秒前
想人陪的远锋完成签到,获得积分20
29秒前
坦率绿旋完成签到,获得积分10
29秒前
29秒前
666发布了新的文献求助10
29秒前
自由的千易完成签到,获得积分20
30秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124803
求助须知:如何正确求助?哪些是违规求助? 2775148
关于积分的说明 7725553
捐赠科研通 2430633
什么是DOI,文献DOI怎么找? 1291291
科研通“疑难数据库(出版商)”最低求助积分说明 622121
版权声明 600328