Sequential binary classification of lithofacies from well log data and its uncertainty quantification

二进制数 地质学 数学 统计 数据挖掘 计算机科学 算术
作者
Min Jun Kim,Honggeun Jo,Hanjoon Park,Yongchae Cho
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:: 1-53
标识
DOI:10.1190/int-2024-0019.1
摘要

Understanding and identifying the composition of various lithofacies in the subsurface is essential for successful reservoir characterization in hydrocarbon exploration. However, conventional methods such as core sampling and manual well log interpretation are labor-intensive. As a result, many scientists are conducting research to utilize machine learning to study lithofacies more effectively and efficiently. However, as researchers are becoming more dependent on machine learning, uncertainty analysis of machine learning models is crucial in order to determine the reliability of the prediction results. Machine-learning algorithms that utilize ensemble methods provide an easy method for uncertainty analysis, but algorithms that do not utilize ensemble methods have difficulty in quantifying the level of uncertainty. This motivated us to introduce a method known as sequential binary classification (SBC), which helps to not only classify lithofacies but also to quantify and visualize regions of uncertainty of the machine-learning models. SBC provides a method for utilizing any classification algorithm of the user’s choice to construct an ensemble, which allows the users to readily quantify uncertainty. The proposed method utilizes the SBC algorithm to classify and quantify uncertainty from well log data obtained from the North Sea near Norway. The results show that most of the lithofacies that exist in the region of interest share similar characteristics, which results in high uncertainty among the various lithofacies, and SBC enables these high uncertainties to be visualized. We additionally demonstrate the utilization of SBC to alleviate the class imbalance issueamong the various lithofacies in the area, which is a very common problem in well log data analytics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静如松完成签到 ,获得积分10
3秒前
5秒前
浮云完成签到 ,获得积分10
6秒前
屈岂愈完成签到,获得积分10
7秒前
21秒前
Pupil完成签到,获得积分10
21秒前
偏偏意气用事完成签到,获得积分10
22秒前
安安完成签到,获得积分10
26秒前
cttc完成签到,获得积分10
27秒前
Chnimike完成签到 ,获得积分10
27秒前
31秒前
红茸茸羊完成签到 ,获得积分10
31秒前
年轻千愁完成签到 ,获得积分10
33秒前
liu完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
34秒前
Wanyeweiyu完成签到,获得积分10
36秒前
Fury完成签到 ,获得积分10
41秒前
风中幻梦完成签到,获得积分10
43秒前
bigpluto完成签到,获得积分10
44秒前
46秒前
是谁还没睡完成签到 ,获得积分10
47秒前
盘尼西林发布了新的文献求助10
51秒前
zzz完成签到 ,获得积分10
53秒前
dktrrrr完成签到,获得积分10
55秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
丘比特应助科研通管家采纳,获得20
55秒前
55秒前
ccc完成签到,获得积分10
1分钟前
萧秋灵完成签到,获得积分10
1分钟前
缓慢冥幽完成签到,获得积分10
1分钟前
旺仔同学完成签到,获得积分10
1分钟前
吉以寒完成签到,获得积分10
1分钟前
科研老兵完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
fys131415完成签到 ,获得积分10
1分钟前
执着的忆雪完成签到 ,获得积分10
1分钟前
1分钟前
闵不悔完成签到,获得积分10
1分钟前
阳光火车完成签到 ,获得积分10
1分钟前
cc完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022