亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sequential binary classification of lithofacies from well log data and its uncertainty quantification

二进制数 地质学 数学 统计 数据挖掘 计算机科学 算术
作者
Min Jun Kim,Honggeun Jo,Hanjoon Park,Yongchae Cho
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:: 1-53
标识
DOI:10.1190/int-2024-0019.1
摘要

Understanding and identifying the composition of various lithofacies in the subsurface is essential for successful reservoir characterization in hydrocarbon exploration. However, conventional methods such as core sampling and manual well log interpretation are labor-intensive. As a result, many scientists are conducting research to utilize machine learning to study lithofacies more effectively and efficiently. However, as researchers are becoming more dependent on machine learning, uncertainty analysis of machine learning models is crucial in order to determine the reliability of the prediction results. Machine-learning algorithms that utilize ensemble methods provide an easy method for uncertainty analysis, but algorithms that do not utilize ensemble methods have difficulty in quantifying the level of uncertainty. This motivated us to introduce a method known as sequential binary classification (SBC), which helps to not only classify lithofacies but also to quantify and visualize regions of uncertainty of the machine-learning models. SBC provides a method for utilizing any classification algorithm of the user’s choice to construct an ensemble, which allows the users to readily quantify uncertainty. The proposed method utilizes the SBC algorithm to classify and quantify uncertainty from well log data obtained from the North Sea near Norway. The results show that most of the lithofacies that exist in the region of interest share similar characteristics, which results in high uncertainty among the various lithofacies, and SBC enables these high uncertainties to be visualized. We additionally demonstrate the utilization of SBC to alleviate the class imbalance issueamong the various lithofacies in the area, which is a very common problem in well log data analytics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
Vivian发布了新的文献求助30
14秒前
Fox完成签到,获得积分10
19秒前
科研通AI2S应助魏欣娜采纳,获得10
22秒前
22秒前
维颖完成签到,获得积分10
24秒前
37秒前
41秒前
42秒前
zhvjdb发布了新的文献求助10
46秒前
Raju发布了新的文献求助100
49秒前
英姑应助lpy李采纳,获得10
49秒前
55秒前
zhvjdb完成签到,获得积分10
59秒前
Yuuw发布了新的文献求助10
1分钟前
bastien驳回了xxfsx应助
1分钟前
1分钟前
1分钟前
Huzhu应助魏欣娜采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得30
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
Yuuw完成签到,获得积分10
1分钟前
1分钟前
Sherry发布了新的文献求助20
1分钟前
充电宝应助青柠采纳,获得10
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
1分钟前
1分钟前
33发布了新的文献求助10
1分钟前
1分钟前
田様应助yydcmnyxx采纳,获得30
1分钟前
2分钟前
RNATx完成签到,获得积分10
2分钟前
lpy李发布了新的文献求助10
2分钟前
lcxw1224完成签到,获得积分10
2分钟前
科目三应助Sherry采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482272
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388849
捐赠科研通 4512197
什么是DOI,文献DOI怎么找? 2472722
邀请新用户注册赠送积分活动 1459016
关于科研通互助平台的介绍 1432418