Sequential binary classification of lithofacies from well log data and its uncertainty quantification

二进制数 地质学 数学 统计 数据挖掘 计算机科学 算术
作者
Min Jun Kim,Honggeun Jo,Hanjoon Park,Yongchae Cho
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:: 1-53
标识
DOI:10.1190/int-2024-0019.1
摘要

Understanding and identifying the composition of various lithofacies in the subsurface is essential for successful reservoir characterization in hydrocarbon exploration. However, conventional methods such as core sampling and manual well log interpretation are labor-intensive. As a result, many scientists are conducting research to utilize machine learning to study lithofacies more effectively and efficiently. However, as researchers are becoming more dependent on machine learning, uncertainty analysis of machine learning models is crucial in order to determine the reliability of the prediction results. Machine-learning algorithms that utilize ensemble methods provide an easy method for uncertainty analysis, but algorithms that do not utilize ensemble methods have difficulty in quantifying the level of uncertainty. This motivated us to introduce a method known as sequential binary classification (SBC), which helps to not only classify lithofacies but also to quantify and visualize regions of uncertainty of the machine-learning models. SBC provides a method for utilizing any classification algorithm of the user’s choice to construct an ensemble, which allows the users to readily quantify uncertainty. The proposed method utilizes the SBC algorithm to classify and quantify uncertainty from well log data obtained from the North Sea near Norway. The results show that most of the lithofacies that exist in the region of interest share similar characteristics, which results in high uncertainty among the various lithofacies, and SBC enables these high uncertainties to be visualized. We additionally demonstrate the utilization of SBC to alleviate the class imbalance issueamong the various lithofacies in the area, which is a very common problem in well log data analytics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
锅锅发布了新的文献求助10
1秒前
科研人河北完成签到,获得积分20
5秒前
6秒前
6秒前
调皮的巧凡完成签到,获得积分10
7秒前
朝朝发布了新的文献求助10
8秒前
9秒前
9秒前
11秒前
11秒前
12秒前
12秒前
moon完成签到,获得积分20
13秒前
wyt发布了新的文献求助10
13秒前
爱与感谢完成签到 ,获得积分10
14秒前
verbal2005发布了新的文献求助10
14秒前
钟山发布了新的文献求助10
14秒前
领导范儿应助自信书兰采纳,获得10
15秒前
自然翠阳完成签到 ,获得积分10
16秒前
HHHu完成签到,获得积分10
17秒前
lizike发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
20秒前
谢大喵发布了新的文献求助10
20秒前
wyt完成签到,获得积分10
21秒前
南芜山为伴完成签到,获得积分10
22秒前
23秒前
25秒前
自信书兰发布了新的文献求助10
29秒前
29秒前
路越发布了新的文献求助10
31秒前
NexusExplorer应助三无采纳,获得10
31秒前
32秒前
35秒前
贝壳完成签到,获得积分10
35秒前
量子星尘发布了新的文献求助10
37秒前
Jasper应助典雅的俊驰采纳,获得10
39秒前
只因不只因完成签到,获得积分10
40秒前
大个应助褚呦采纳,获得10
43秒前
丘比特应助简7采纳,获得10
45秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5144545
求助须知:如何正确求助?哪些是违规求助? 4342237
关于积分的说明 13522560
捐赠科研通 4182757
什么是DOI,文献DOI怎么找? 2293639
邀请新用户注册赠送积分活动 1294207
关于科研通互助平台的介绍 1236955