Sequential binary classification of lithofacies from well log data and its uncertainty quantification

二进制数 地质学 数学 统计 数据挖掘 计算机科学 算术
作者
Min Jun Kim,Honggeun Jo,Hanjoon Park,Yongchae Cho
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:: 1-53
标识
DOI:10.1190/int-2024-0019.1
摘要

Understanding and identifying the composition of various lithofacies in the subsurface is essential for successful reservoir characterization in hydrocarbon exploration. However, conventional methods such as core sampling and manual well log interpretation are labor-intensive. As a result, many scientists are conducting research to utilize machine learning to study lithofacies more effectively and efficiently. However, as researchers are becoming more dependent on machine learning, uncertainty analysis of machine learning models is crucial in order to determine the reliability of the prediction results. Machine-learning algorithms that utilize ensemble methods provide an easy method for uncertainty analysis, but algorithms that do not utilize ensemble methods have difficulty in quantifying the level of uncertainty. This motivated us to introduce a method known as sequential binary classification (SBC), which helps to not only classify lithofacies but also to quantify and visualize regions of uncertainty of the machine-learning models. SBC provides a method for utilizing any classification algorithm of the user’s choice to construct an ensemble, which allows the users to readily quantify uncertainty. The proposed method utilizes the SBC algorithm to classify and quantify uncertainty from well log data obtained from the North Sea near Norway. The results show that most of the lithofacies that exist in the region of interest share similar characteristics, which results in high uncertainty among the various lithofacies, and SBC enables these high uncertainties to be visualized. We additionally demonstrate the utilization of SBC to alleviate the class imbalance issueamong the various lithofacies in the area, which is a very common problem in well log data analytics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123123123发布了新的文献求助10
刚刚
哞哞完成签到 ,获得积分10
1秒前
汐总发布了新的文献求助10
1秒前
lz发布了新的文献求助10
2秒前
雨季完成签到,获得积分10
4秒前
4秒前
Orange应助酷酷三问采纳,获得10
5秒前
花生糕完成签到,获得积分10
6秒前
李爱国应助ashenliu采纳,获得10
9秒前
汤泽琪发布了新的文献求助30
9秒前
12秒前
YanZhe完成签到,获得积分10
14秒前
汤泽琪完成签到,获得积分10
14秒前
yyds应助合适山蝶采纳,获得50
15秒前
16秒前
如不二发布了新的文献求助10
18秒前
迅速大白完成签到 ,获得积分10
18秒前
18秒前
Ice_zhao完成签到,获得积分10
19秒前
cowmoon完成签到 ,获得积分10
19秒前
WWWUBING完成签到,获得积分10
21秒前
ShellyMaya完成签到 ,获得积分10
22秒前
优雅含灵发布了新的文献求助10
22秒前
自由可兰完成签到 ,获得积分10
22秒前
23秒前
26秒前
Akim应助宋明阳采纳,获得10
28秒前
石会发发布了新的文献求助20
28秒前
29秒前
量子星尘发布了新的文献求助10
31秒前
如不二完成签到,获得积分20
31秒前
坦率白竹完成签到,获得积分10
33秒前
Chenxi完成签到 ,获得积分10
37秒前
云漪发布了新的文献求助10
38秒前
NexusExplorer应助小翼采纳,获得10
38秒前
徐涵完成签到 ,获得积分10
39秒前
40秒前
NexusExplorer应助xiaohei采纳,获得10
40秒前
石会发完成签到,获得积分20
44秒前
chenling完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426028
求助须知:如何正确求助?哪些是违规求助? 4539733
关于积分的说明 14170371
捐赠科研通 4457563
什么是DOI,文献DOI怎么找? 2444607
邀请新用户注册赠送积分活动 1435561
关于科研通互助平台的介绍 1412955