Sequential binary classification of lithofacies from well log data and its uncertainty quantification

二进制数 地质学 数学 统计 数据挖掘 计算机科学 算术
作者
Min Jun Kim,Honggeun Jo,Hanjoon Park,Yongchae Cho
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:: 1-53
标识
DOI:10.1190/int-2024-0019.1
摘要

Understanding and identifying the composition of various lithofacies in the subsurface is essential for successful reservoir characterization in hydrocarbon exploration. However, conventional methods such as core sampling and manual well log interpretation are labor-intensive. As a result, many scientists are conducting research to utilize machine learning to study lithofacies more effectively and efficiently. However, as researchers are becoming more dependent on machine learning, uncertainty analysis of machine learning models is crucial in order to determine the reliability of the prediction results. Machine-learning algorithms that utilize ensemble methods provide an easy method for uncertainty analysis, but algorithms that do not utilize ensemble methods have difficulty in quantifying the level of uncertainty. This motivated us to introduce a method known as sequential binary classification (SBC), which helps to not only classify lithofacies but also to quantify and visualize regions of uncertainty of the machine-learning models. SBC provides a method for utilizing any classification algorithm of the user’s choice to construct an ensemble, which allows the users to readily quantify uncertainty. The proposed method utilizes the SBC algorithm to classify and quantify uncertainty from well log data obtained from the North Sea near Norway. The results show that most of the lithofacies that exist in the region of interest share similar characteristics, which results in high uncertainty among the various lithofacies, and SBC enables these high uncertainties to be visualized. We additionally demonstrate the utilization of SBC to alleviate the class imbalance issueamong the various lithofacies in the area, which is a very common problem in well log data analytics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巴山完成签到,获得积分10
1秒前
无花果应助ly采纳,获得10
1秒前
loren313完成签到,获得积分0
5秒前
玄学小生完成签到 ,获得积分10
7秒前
小梦完成签到,获得积分10
8秒前
白桃完成签到 ,获得积分10
10秒前
王世卉完成签到,获得积分10
11秒前
湖以完成签到 ,获得积分10
15秒前
清脆的靖仇完成签到,获得积分10
21秒前
lixiaoya完成签到,获得积分10
22秒前
小洪俊熙完成签到,获得积分10
22秒前
nicolaslcq完成签到,获得积分10
32秒前
研友_Z119gZ完成签到 ,获得积分10
42秒前
Cold-Drink-Shop完成签到,获得积分10
50秒前
1分钟前
ly发布了新的文献求助10
1分钟前
权小夏完成签到 ,获得积分10
1分钟前
帅气的宽完成签到 ,获得积分10
1分钟前
小丸子完成签到 ,获得积分10
1分钟前
634301059完成签到 ,获得积分10
1分钟前
George完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
七月完成签到,获得积分10
1分钟前
1分钟前
路路完成签到 ,获得积分10
1分钟前
单薄念波发布了新的文献求助10
1分钟前
ymr完成签到 ,获得积分10
1分钟前
hellomoon完成签到 ,获得积分10
1分钟前
如意的馒头完成签到 ,获得积分10
1分钟前
单薄念波完成签到,获得积分10
1分钟前
czj完成签到 ,获得积分10
1分钟前
海盗船长完成签到,获得积分10
2分钟前
2分钟前
amai完成签到,获得积分10
2分钟前
wenhuanwenxian完成签到 ,获得积分10
2分钟前
渠建武发布了新的文献求助10
2分钟前
提莫silence完成签到 ,获得积分10
2分钟前
小小完成签到 ,获得积分10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968559
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167340
捐赠科研通 3248714
什么是DOI,文献DOI怎么找? 1794453
邀请新用户注册赠送积分活动 875065
科研通“疑难数据库(出版商)”最低求助积分说明 804664