Sequential binary classification of lithofacies from well log data and its uncertainty quantification

二进制数 地质学 数学 统计 数据挖掘 计算机科学 算术
作者
Min Jun Kim,Honggeun Jo,Hanjoon Park,Yongchae Cho
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:: 1-53
标识
DOI:10.1190/int-2024-0019.1
摘要

Understanding and identifying the composition of various lithofacies in the subsurface is essential for successful reservoir characterization in hydrocarbon exploration. However, conventional methods such as core sampling and manual well log interpretation are labor-intensive. As a result, many scientists are conducting research to utilize machine learning to study lithofacies more effectively and efficiently. However, as researchers are becoming more dependent on machine learning, uncertainty analysis of machine learning models is crucial in order to determine the reliability of the prediction results. Machine-learning algorithms that utilize ensemble methods provide an easy method for uncertainty analysis, but algorithms that do not utilize ensemble methods have difficulty in quantifying the level of uncertainty. This motivated us to introduce a method known as sequential binary classification (SBC), which helps to not only classify lithofacies but also to quantify and visualize regions of uncertainty of the machine-learning models. SBC provides a method for utilizing any classification algorithm of the user’s choice to construct an ensemble, which allows the users to readily quantify uncertainty. The proposed method utilizes the SBC algorithm to classify and quantify uncertainty from well log data obtained from the North Sea near Norway. The results show that most of the lithofacies that exist in the region of interest share similar characteristics, which results in high uncertainty among the various lithofacies, and SBC enables these high uncertainties to be visualized. We additionally demonstrate the utilization of SBC to alleviate the class imbalance issueamong the various lithofacies in the area, which is a very common problem in well log data analytics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yck1027发布了新的文献求助10
1秒前
1秒前
脑洞疼应助negue采纳,获得10
2秒前
Aba关闭了Aba文献求助
3秒前
轻松的兔子完成签到,获得积分10
3秒前
丘比特应助大气的黑夜采纳,获得10
4秒前
搜集达人应助xxxx_w采纳,获得10
4秒前
wsz发布了新的文献求助10
4秒前
wood完成签到,获得积分10
4秒前
5秒前
哈哈哈哈哈哈完成签到,获得积分10
5秒前
6秒前
6秒前
ding应助眯眯眼的老五采纳,获得10
6秒前
Akim应助momo采纳,获得10
7秒前
7秒前
8秒前
汉堡包应助书雪采纳,获得10
8秒前
BAEKHYUNLUCKY发布了新的文献求助10
8秒前
故笺完成签到,获得积分10
8秒前
科研通AI6应助飞飞采纳,获得10
9秒前
10秒前
Georges-09发布了新的文献求助10
10秒前
微笑柜子关注了科研通微信公众号
10秒前
烟花应助典雅的俊驰采纳,获得10
11秒前
朴素的月光完成签到,获得积分10
11秒前
小豆发布了新的文献求助10
12秒前
陈新完成签到,获得积分10
12秒前
酷波er应助浮浮世世采纳,获得10
12秒前
小书包完成签到,获得积分10
12秒前
故笺发布了新的文献求助10
13秒前
13秒前
科研通AI6应助大方的凌波采纳,获得10
13秒前
Sisyphus完成签到,获得积分10
14秒前
MIAAAO完成签到,获得积分10
14秒前
小蛇玩发布了新的文献求助10
14秒前
科研人发布了新的文献求助10
14秒前
科研通AI2S应助zsy采纳,获得10
14秒前
科研通AI6应助进步采纳,获得10
15秒前
16秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646