Sequential binary classification of lithofacies from well log data and its uncertainty quantification

二进制数 地质学 数学 统计 数据挖掘 计算机科学 算术
作者
Min Jun Kim,Honggeun Jo,Hanjoon Park,Yongchae Cho
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:: 1-53
标识
DOI:10.1190/int-2024-0019.1
摘要

Understanding and identifying the composition of various lithofacies in the subsurface is essential for successful reservoir characterization in hydrocarbon exploration. However, conventional methods such as core sampling and manual well log interpretation are labor-intensive. As a result, many scientists are conducting research to utilize machine learning to study lithofacies more effectively and efficiently. However, as researchers are becoming more dependent on machine learning, uncertainty analysis of machine learning models is crucial in order to determine the reliability of the prediction results. Machine-learning algorithms that utilize ensemble methods provide an easy method for uncertainty analysis, but algorithms that do not utilize ensemble methods have difficulty in quantifying the level of uncertainty. This motivated us to introduce a method known as sequential binary classification (SBC), which helps to not only classify lithofacies but also to quantify and visualize regions of uncertainty of the machine-learning models. SBC provides a method for utilizing any classification algorithm of the user’s choice to construct an ensemble, which allows the users to readily quantify uncertainty. The proposed method utilizes the SBC algorithm to classify and quantify uncertainty from well log data obtained from the North Sea near Norway. The results show that most of the lithofacies that exist in the region of interest share similar characteristics, which results in high uncertainty among the various lithofacies, and SBC enables these high uncertainties to be visualized. We additionally demonstrate the utilization of SBC to alleviate the class imbalance issueamong the various lithofacies in the area, which is a very common problem in well log data analytics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
董zh完成签到,获得积分10
刚刚
科研废物发布了新的文献求助10
刚刚
迢迢星河万里完成签到,获得积分10
1秒前
1秒前
科研通AI6应助kk_yang采纳,获得10
1秒前
等待盼山发布了新的文献求助20
2秒前
JETSTREAM完成签到,获得积分10
2秒前
Owen应助lq采纳,获得10
2秒前
彪壮的邑完成签到,获得积分10
2秒前
研友_VZG7GZ应助龙龍泷采纳,获得10
3秒前
Earnestlee发布了新的文献求助60
3秒前
ruirui_love发布了新的文献求助10
4秒前
科研通AI6应助aishiying采纳,获得30
4秒前
麦子发布了新的文献求助10
4秒前
4秒前
可爱的函函应助花汐采纳,获得10
5秒前
善学以致用应助好运莲莲采纳,获得10
5秒前
情怀应助小七2022采纳,获得10
5秒前
MUWENYING完成签到,获得积分10
5秒前
上官若男应助AJY采纳,获得10
5秒前
科研通AI6应助噜啦啦采纳,获得10
5秒前
上官若男应助小闰土采纳,获得10
5秒前
xie发布了新的文献求助10
6秒前
情怀应助烤肠采纳,获得10
7秒前
97发布了新的文献求助10
7秒前
虚心碧完成签到,获得积分20
7秒前
8秒前
舒适静丹发布了新的文献求助10
8秒前
王一完成签到,获得积分20
9秒前
9秒前
9秒前
9秒前
10秒前
黄礼韬发布了新的文献求助10
10秒前
Takagi完成签到,获得积分10
11秒前
2010完成签到,获得积分10
11秒前
12秒前
王一发布了新的文献求助30
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525344
求助须知:如何正确求助?哪些是违规求助? 4615587
关于积分的说明 14549232
捐赠科研通 4553605
什么是DOI,文献DOI怎么找? 2495428
邀请新用户注册赠送积分活动 1475975
关于科研通互助平台的介绍 1447716