Sequential binary classification of lithofacies from well log data and its uncertainty quantification

二进制数 地质学 数学 统计 数据挖掘 计算机科学 算术
作者
Min Jun Kim,Honggeun Jo,Hanjoon Park,Yongchae Cho
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:: 1-53
标识
DOI:10.1190/int-2024-0019.1
摘要

Understanding and identifying the composition of various lithofacies in the subsurface is essential for successful reservoir characterization in hydrocarbon exploration. However, conventional methods such as core sampling and manual well log interpretation are labor-intensive. As a result, many scientists are conducting research to utilize machine learning to study lithofacies more effectively and efficiently. However, as researchers are becoming more dependent on machine learning, uncertainty analysis of machine learning models is crucial in order to determine the reliability of the prediction results. Machine-learning algorithms that utilize ensemble methods provide an easy method for uncertainty analysis, but algorithms that do not utilize ensemble methods have difficulty in quantifying the level of uncertainty. This motivated us to introduce a method known as sequential binary classification (SBC), which helps to not only classify lithofacies but also to quantify and visualize regions of uncertainty of the machine-learning models. SBC provides a method for utilizing any classification algorithm of the user’s choice to construct an ensemble, which allows the users to readily quantify uncertainty. The proposed method utilizes the SBC algorithm to classify and quantify uncertainty from well log data obtained from the North Sea near Norway. The results show that most of the lithofacies that exist in the region of interest share similar characteristics, which results in high uncertainty among the various lithofacies, and SBC enables these high uncertainties to be visualized. We additionally demonstrate the utilization of SBC to alleviate the class imbalance issueamong the various lithofacies in the area, which is a very common problem in well log data analytics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风起枫落完成签到 ,获得积分10
1秒前
wenhuanwenxian完成签到 ,获得积分10
4秒前
jiayoujijin完成签到 ,获得积分10
12秒前
Dingz完成签到,获得积分10
13秒前
kumo完成签到 ,获得积分10
15秒前
十七完成签到 ,获得积分10
17秒前
求知若渴口好干完成签到 ,获得积分10
24秒前
yinhe完成签到 ,获得积分10
30秒前
无极2023完成签到 ,获得积分10
34秒前
huangzsdy完成签到,获得积分10
35秒前
微卫星不稳定完成签到 ,获得积分0
39秒前
水星完成签到 ,获得积分10
49秒前
客官们帮帮忙完成签到 ,获得积分10
54秒前
loren313完成签到,获得积分0
57秒前
陈大侠完成签到 ,获得积分10
1分钟前
jue完成签到 ,获得积分10
1分钟前
拉长的诗蕊完成签到,获得积分10
1分钟前
652183758完成签到 ,获得积分10
1分钟前
1分钟前
如意的馒头完成签到 ,获得积分10
1分钟前
泌尿小周完成签到 ,获得积分10
1分钟前
斯文的迎松完成签到,获得积分20
1分钟前
zx完成签到 ,获得积分10
1分钟前
爆米花应助john采纳,获得10
1分钟前
mjf111发布了新的文献求助10
2分钟前
xiaozhang完成签到 ,获得积分10
2分钟前
彩色的冷梅完成签到 ,获得积分10
2分钟前
yii完成签到 ,获得积分10
2分钟前
zmx完成签到 ,获得积分10
2分钟前
钟声完成签到,获得积分0
2分钟前
又又完成签到,获得积分10
2分钟前
2分钟前
john发布了新的文献求助10
2分钟前
清脆安南完成签到 ,获得积分10
2分钟前
Lexi完成签到 ,获得积分10
2分钟前
HSJ完成签到 ,获得积分10
2分钟前
jojo665完成签到 ,获得积分10
2分钟前
john完成签到,获得积分10
2分钟前
hsrlbc完成签到,获得积分10
3分钟前
April完成签到,获得积分10
3分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099800
求助须知:如何正确求助?哪些是违规求助? 2751277
关于积分的说明 7612198
捐赠科研通 2403062
什么是DOI,文献DOI怎么找? 1275162
科研通“疑难数据库(出版商)”最低求助积分说明 616276
版权声明 599053