亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sequential binary classification of lithofacies from well log data and its uncertainty quantification

二进制数 地质学 数学 统计 数据挖掘 计算机科学 算术
作者
Min Jun Kim,Honggeun Jo,Hanjoon Park,Yongchae Cho
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:: 1-53
标识
DOI:10.1190/int-2024-0019.1
摘要

Understanding and identifying the composition of various lithofacies in the subsurface is essential for successful reservoir characterization in hydrocarbon exploration. However, conventional methods such as core sampling and manual well log interpretation are labor-intensive. As a result, many scientists are conducting research to utilize machine learning to study lithofacies more effectively and efficiently. However, as researchers are becoming more dependent on machine learning, uncertainty analysis of machine learning models is crucial in order to determine the reliability of the prediction results. Machine-learning algorithms that utilize ensemble methods provide an easy method for uncertainty analysis, but algorithms that do not utilize ensemble methods have difficulty in quantifying the level of uncertainty. This motivated us to introduce a method known as sequential binary classification (SBC), which helps to not only classify lithofacies but also to quantify and visualize regions of uncertainty of the machine-learning models. SBC provides a method for utilizing any classification algorithm of the user’s choice to construct an ensemble, which allows the users to readily quantify uncertainty. The proposed method utilizes the SBC algorithm to classify and quantify uncertainty from well log data obtained from the North Sea near Norway. The results show that most of the lithofacies that exist in the region of interest share similar characteristics, which results in high uncertainty among the various lithofacies, and SBC enables these high uncertainties to be visualized. We additionally demonstrate the utilization of SBC to alleviate the class imbalance issueamong the various lithofacies in the area, which is a very common problem in well log data analytics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助紧张的皮皮虾采纳,获得10
20秒前
WK完成签到,获得积分10
23秒前
29秒前
31秒前
36秒前
45秒前
方的圆完成签到,获得积分10
48秒前
量子星尘发布了新的文献求助10
53秒前
紧张的皮皮虾完成签到,获得积分10
57秒前
文静的峻熙完成签到,获得积分10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Vi完成签到 ,获得积分10
1分钟前
领导范儿应助ch采纳,获得10
1分钟前
1分钟前
1分钟前
ch发布了新的文献求助10
1分钟前
我是老大应助ceeray23采纳,获得20
1分钟前
1分钟前
Microbiota完成签到,获得积分10
2分钟前
2分钟前
ch完成签到,获得积分10
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
随性随缘随命完成签到 ,获得积分10
2分钟前
田様应助幸福萝采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Jasper应助摆渡人采纳,获得10
3分钟前
vocuong发布了新的文献求助10
3分钟前
丘比特应助科研通管家采纳,获得10
3分钟前
3分钟前
摆渡人发布了新的文献求助10
3分钟前
Rondab应助fly采纳,获得10
3分钟前
幸福萝完成签到,获得积分10
3分钟前
3分钟前
明理依云发布了新的文献求助10
3分钟前
孙孙应助李治稳采纳,获得10
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976628
求助须知:如何正确求助?哪些是违规求助? 3520735
关于积分的说明 11204575
捐赠科研通 3257428
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806613