EXPRESS: A Machine Learning Approach to Solve the E-commerce Box-Sizing Problem

尺寸 计算机科学 运筹学 数学优化 工业工程 运营管理 人工智能 业务 经济 数学 工程类 艺术 视觉艺术
作者
Shanthan Kandula,Debjit Roy,Kerem Akartunalı
出处
期刊:Production and Operations Management [Wiley]
标识
DOI:10.1177/10591478241282249
摘要

E-commerce packages are notorious for their inefficient usage of space. More than one-quarter volume of a typical e-commerce package comprises air and filler material. The inefficient usage of space significantly reduces the transportation and distribution capacity increasing the operational costs. Therefore, designing an optimal set of packaging box sizes is crucial for improving efficiency. We present the first learning-based framework to determine the optimal packaging box sizes. In particular, we propose a three-stage optimization framework that combines unsupervised learning, reinforcement learning, and tree search to design box sizes. The package optimization problem is formulated into a sequential decision-making task called the box-sizing game. A neural network agent is then designed to play the game and learn heuristic rules to solve the problem. In addition, a tree-search operator is developed to improve the performance of the learned networks. When benchmarked with company-based optimization formulation and two alternate optimization models, we find that our ML-based approach can effectively solve large-scale problems within a stipulated time. We evaluated our model on real-world datasets supplied by a large e-commerce platform. The framework is currently adopted by a large e-commerce company across its 28 fulfillment centers, which is estimated to save the company about 7.1 million USD annually. In addition, it is estimated that paper consumption will be reduced by 2080 metric tons and greenhouse gas emissions by 1960 metric tons annually. The presented optimization framework serves as a decision support tool for designing packaging boxes at large e-commerce warehouses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
sci来完成签到,获得积分10
1秒前
WJ完成签到,获得积分10
2秒前
???完成签到,获得积分10
2秒前
srf0602.发布了新的文献求助10
2秒前
123关闭了123文献求助
2秒前
2秒前
2秒前
2秒前
2秒前
小蘑菇应助jun_shen采纳,获得30
3秒前
内向映天完成签到 ,获得积分10
3秒前
3秒前
byd完成签到,获得积分10
4秒前
4秒前
脑洞疼应助DHY采纳,获得10
4秒前
kk发布了新的文献求助10
4秒前
NexusExplorer应助美味cookies采纳,获得10
5秒前
YY88687321发布了新的文献求助10
5秒前
Karlie发布了新的文献求助10
5秒前
5秒前
77发布了新的文献求助10
6秒前
兴奋电脑完成签到,获得积分10
6秒前
SCI论文获得者完成签到 ,获得积分20
6秒前
6秒前
es发布了新的文献求助10
7秒前
华猴猴完成签到,获得积分10
7秒前
传统的孤丝完成签到 ,获得积分10
7秒前
KOBEbeartwo发布了新的文献求助10
7秒前
Q甜完成签到,获得积分10
8秒前
8秒前
无妄生欢完成签到,获得积分10
9秒前
34101127完成签到,获得积分10
9秒前
Hello应助灰灰采纳,获得10
9秒前
JimeiLi发布了新的文献求助10
9秒前
Mira完成签到,获得积分10
10秒前
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016703
求助须知:如何正确求助?哪些是违规求助? 3556823
关于积分的说明 11322708
捐赠科研通 3289505
什么是DOI,文献DOI怎么找? 1812495
邀请新用户注册赠送积分活动 888064
科研通“疑难数据库(出版商)”最低求助积分说明 812086