EXPRESS: A Machine Learning Approach to Solve the E-commerce Box-Sizing Problem

尺寸 计算机科学 运筹学 数学优化 工业工程 运营管理 人工智能 业务 经济 数学 工程类 艺术 视觉艺术
作者
Shanthan Kandula,Debjit Roy,Kerem Akartunalı
出处
期刊:Production and Operations Management [Wiley]
标识
DOI:10.1177/10591478241282249
摘要

E-commerce packages are notorious for their inefficient usage of space. More than one-quarter volume of a typical e-commerce package comprises air and filler material. The inefficient usage of space significantly reduces the transportation and distribution capacity increasing the operational costs. Therefore, designing an optimal set of packaging box sizes is crucial for improving efficiency. We present the first learning-based framework to determine the optimal packaging box sizes. In particular, we propose a three-stage optimization framework that combines unsupervised learning, reinforcement learning, and tree search to design box sizes. The package optimization problem is formulated into a sequential decision-making task called the box-sizing game. A neural network agent is then designed to play the game and learn heuristic rules to solve the problem. In addition, a tree-search operator is developed to improve the performance of the learned networks. When benchmarked with company-based optimization formulation and two alternate optimization models, we find that our ML-based approach can effectively solve large-scale problems within a stipulated time. We evaluated our model on real-world datasets supplied by a large e-commerce platform. The framework is currently adopted by a large e-commerce company across its 28 fulfillment centers, which is estimated to save the company about 7.1 million USD annually. In addition, it is estimated that paper consumption will be reduced by 2080 metric tons and greenhouse gas emissions by 1960 metric tons annually. The presented optimization framework serves as a decision support tool for designing packaging boxes at large e-commerce warehouses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mark发布了新的文献求助10
2秒前
2秒前
乐观鱼完成签到,获得积分10
2秒前
大模型应助丶氵一生里采纳,获得10
2秒前
3秒前
Stella完成签到,获得积分20
4秒前
在水一方应助奔跑的小鹰采纳,获得10
4秒前
ogotho发布了新的文献求助10
5秒前
Guo21完成签到,获得积分10
6秒前
6秒前
7秒前
9秒前
杜华詹完成签到,获得积分10
10秒前
10秒前
晴朗完成签到 ,获得积分10
10秒前
mochen发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
rara发布了新的文献求助30
12秒前
Yu完成签到 ,获得积分10
13秒前
存存发布了新的文献求助10
13秒前
灰灰发布了新的文献求助10
13秒前
标致雪碧发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
张zhang应助Yleshu采纳,获得10
16秒前
执笔客发布了新的文献求助10
16秒前
Sg发布了新的文献求助10
16秒前
ABS发布了新的文献求助10
17秒前
17秒前
可爱的函函应助木子采纳,获得10
17秒前
byyyy发布了新的文献求助20
18秒前
123456发布了新的文献求助10
18秒前
20秒前
21秒前
25秒前
科研通AI2S应助mochen采纳,获得10
25秒前
小天使发布了新的文献求助10
26秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207318
求助须知:如何正确求助?哪些是违规求助? 2856706
关于积分的说明 8106534
捐赠科研通 2521854
什么是DOI,文献DOI怎么找? 1355242
科研通“疑难数据库(出版商)”最低求助积分说明 642199
邀请新用户注册赠送积分活动 613478