Randomized algorithms for large-scale dictionary learning

计算机科学 K-SVD公司 算法 奇异值分解 核(代数) 人工智能 基质(化学分析) 稀疏逼近 数学 组合数学 复合材料 材料科学
作者
Gang Wu,Jiali Yang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:179: 106628-106628
标识
DOI:10.1016/j.neunet.2024.106628
摘要

Dictionary learning is an important sparse representation algorithm which has been widely used in machine learning and artificial intelligence. However, for massive data in the big data era, classical dictionary learning algorithms are computationally expensive and even can be infeasible. To overcome this difficulty, we propose new dictionary learning methods based on randomized algorithms. The contributions of this work are as follows. First, we find that dictionary matrix is often numerically low-rank. Based on this property, we apply randomized singular value decomposition (RSVD) to the dictionary matrix, and propose a randomized algorithm for linear dictionary learning. Compared with the classical K-SVD algorithm, an advantage is that one can update all the elements of the dictionary matrix simultaneously. Second, to the best of our knowledge, there are few theoretical results on why one can solve the involved matrix computation problems inexactly in dictionary learning. To fill-in this gap, we show the rationality of this randomized algorithm with inexact solving, from a matrix perturbation analysis point of view. Third, based on the numerically low-rank property and Nyström approximation of the kernel matrix, we propose a randomized kernel dictionary learning algorithm, and establish the distance between the exact solution and the computed solution, to show the effectiveness of the proposed randomized kernel dictionary learning algorithm. Fourth, we propose an efficient scheme for the testing stage in kernel dictionary learning. By using this strategy, there is no need to form nor store kernel matrices explicitly both in the training and the testing stages. Comprehensive numerical experiments are performed on some real-world data sets. Numerical results demonstrate the rationality of our strategies, and show that the proposed algorithms are much efficient than some state-of-the-art dictionary learning algorithms. The MATLAB codes of the proposed algorithms are publicly available from https://github.com/Jiali-yang/RALDL_RAKDL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑的井完成签到 ,获得积分10
刚刚
寒舒完成签到,获得积分10
刚刚
ASBL完成签到,获得积分10
1秒前
鬼笔环肽发布了新的文献求助10
1秒前
卜大大完成签到,获得积分10
1秒前
1秒前
WYT发布了新的文献求助10
1秒前
YzUCC发布了新的文献求助10
3秒前
可耐的汲完成签到,获得积分10
3秒前
慕青应助刘一刀采纳,获得10
3秒前
Adalwolf完成签到,获得积分10
3秒前
一口吃掉橘子完成签到,获得积分10
3秒前
wangchaofk完成签到,获得积分10
3秒前
陆吾应助一二采纳,获得10
4秒前
4秒前
4秒前
李逸玄完成签到,获得积分10
4秒前
Snoopy发布了新的文献求助10
5秒前
浑语堂发布了新的文献求助10
5秒前
5秒前
5秒前
浮世完成签到,获得积分10
6秒前
李温温完成签到,获得积分20
6秒前
enchanted完成签到,获得积分10
6秒前
7秒前
Jasper应助bule采纳,获得10
7秒前
7秒前
Thea发布了新的文献求助10
8秒前
8秒前
大萌发布了新的文献求助10
9秒前
猪猪hero发布了新的文献求助30
10秒前
情怀应助Charety采纳,获得10
10秒前
luoluo完成签到,获得积分10
10秒前
科研通AI2S应助超人Steiner采纳,获得10
11秒前
11秒前
11秒前
拓跋箴发布了新的文献求助10
12秒前
啦啦啦喽完成签到,获得积分10
12秒前
刘一刀发布了新的文献求助10
12秒前
奋斗的雪曼完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950435
求助须知:如何正确求助?哪些是违规求助? 3495874
关于积分的说明 11079268
捐赠科研通 3226319
什么是DOI,文献DOI怎么找? 1783751
邀请新用户注册赠送积分活动 867787
科研通“疑难数据库(出版商)”最低求助积分说明 800942