Randomized algorithms for large-scale dictionary learning

计算机科学 K-SVD公司 算法 奇异值分解 核(代数) 人工智能 基质(化学分析) 稀疏逼近 数学 组合数学 复合材料 材料科学
作者
Gang Wu,Jiali Yang
出处
期刊:Neural Networks [Elsevier]
卷期号:179: 106628-106628
标识
DOI:10.1016/j.neunet.2024.106628
摘要

Dictionary learning is an important sparse representation algorithm which has been widely used in machine learning and artificial intelligence. However, for massive data in the big data era, classical dictionary learning algorithms are computationally expensive and even can be infeasible. To overcome this difficulty, we propose new dictionary learning methods based on randomized algorithms. The contributions of this work are as follows. First, we find that dictionary matrix is often numerically low-rank. Based on this property, we apply randomized singular value decomposition (RSVD) to the dictionary matrix, and propose a randomized algorithm for linear dictionary learning. Compared with the classical K-SVD algorithm, an advantage is that one can update all the elements of the dictionary matrix simultaneously. Second, to the best of our knowledge, there are few theoretical results on why one can solve the involved matrix computation problems inexactly in dictionary learning. To fill-in this gap, we show the rationality of this randomized algorithm with inexact solving, from a matrix perturbation analysis point of view. Third, based on the numerically low-rank property and Nyström approximation of the kernel matrix, we propose a randomized kernel dictionary learning algorithm, and establish the distance between the exact solution and the computed solution, to show the effectiveness of the proposed randomized kernel dictionary learning algorithm. Fourth, we propose an efficient scheme for the testing stage in kernel dictionary learning. By using this strategy, there is no need to form nor store kernel matrices explicitly both in the training and the testing stages. Comprehensive numerical experiments are performed on some real-world data sets. Numerical results demonstrate the rationality of our strategies, and show that the proposed algorithms are much efficient than some state-of-the-art dictionary learning algorithms. The MATLAB codes of the proposed algorithms are publicly available from https://github.com/Jiali-yang/RALDL_RAKDL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢书南完成签到,获得积分10
1秒前
1秒前
LL完成签到,获得积分10
1秒前
羊羊完成签到,获得积分10
2秒前
Ziki完成签到,获得积分10
2秒前
科研狗发布了新的文献求助10
3秒前
3秒前
雨天不打伞完成签到 ,获得积分10
4秒前
晚风cc关注了科研通微信公众号
4秒前
机智的顺溜完成签到,获得积分10
4秒前
SHENJING发布了新的文献求助10
4秒前
Owen应助小巧的诗双采纳,获得10
4秒前
5秒前
5秒前
赵世璧完成签到,获得积分10
5秒前
jdndbd发布了新的文献求助10
5秒前
sss完成签到,获得积分10
5秒前
大模型应助魔幻灵煌采纳,获得10
5秒前
虚心的砖家完成签到,获得积分10
6秒前
6秒前
所所应助heehee采纳,获得10
6秒前
田様应助shadow采纳,获得10
7秒前
7秒前
8秒前
迷路雨寒应助欠虐宝宝采纳,获得10
8秒前
8秒前
9秒前
冬去春来发布了新的文献求助10
9秒前
9秒前
ELEGENCE完成签到,获得积分10
9秒前
路过看看完成签到,获得积分10
9秒前
霸气剑通发布了新的文献求助10
10秒前
lll发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
arT发布了新的文献求助10
11秒前
zhangyanan24发布了新的文献求助10
11秒前
乐乐应助常艳艳采纳,获得10
11秒前
siver完成签到 ,获得积分10
11秒前
淡定完成签到,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425