Randomized algorithms for large-scale dictionary learning

计算机科学 K-SVD公司 算法 奇异值分解 核(代数) 人工智能 基质(化学分析) 稀疏逼近 数学 材料科学 组合数学 复合材料
作者
Gang Wu,Jiali Yang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:179: 106628-106628
标识
DOI:10.1016/j.neunet.2024.106628
摘要

Dictionary learning is an important sparse representation algorithm which has been widely used in machine learning and artificial intelligence. However, for massive data in the big data era, classical dictionary learning algorithms are computationally expensive and even can be infeasible. To overcome this difficulty, we propose new dictionary learning methods based on randomized algorithms. The contributions of this work are as follows. First, we find that dictionary matrix is often numerically low-rank. Based on this property, we apply randomized singular value decomposition (RSVD) to the dictionary matrix, and propose a randomized algorithm for linear dictionary learning. Compared with the classical K-SVD algorithm, an advantage is that one can update all the elements of the dictionary matrix simultaneously. Second, to the best of our knowledge, there are few theoretical results on why one can solve the involved matrix computation problems inexactly in dictionary learning. To fill-in this gap, we show the rationality of this randomized algorithm with inexact solving, from a matrix perturbation analysis point of view. Third, based on the numerically low-rank property and Nyström approximation of the kernel matrix, we propose a randomized kernel dictionary learning algorithm, and establish the distance between the exact solution and the computed solution, to show the effectiveness of the proposed randomized kernel dictionary learning algorithm. Fourth, we propose an efficient scheme for the testing stage in kernel dictionary learning. By using this strategy, there is no need to form nor store kernel matrices explicitly both in the training and the testing stages. Comprehensive numerical experiments are performed on some real-world data sets. Numerical results demonstrate the rationality of our strategies, and show that the proposed algorithms are much efficient than some state-of-the-art dictionary learning algorithms. The MATLAB codes of the proposed algorithms are publicly available from https://github.com/Jiali-yang/RALDL_RAKDL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
swsx1317完成签到,获得积分10
1秒前
时光倒流的鱼完成签到,获得积分10
1秒前
meimale完成签到,获得积分10
1秒前
都是发布了新的文献求助10
1秒前
1秒前
梧桐完成签到,获得积分10
2秒前
殷勤的紫槐完成签到,获得积分10
2秒前
2秒前
上官若男应助酷炫的不悔采纳,获得10
4秒前
OsHTAS完成签到,获得积分10
4秒前
邓佳鑫Alan应助laola采纳,获得10
5秒前
葡萄炖雪梨完成签到 ,获得积分10
5秒前
水瓶鱼完成签到,获得积分0
5秒前
daidai完成签到,获得积分10
6秒前
学茶小白完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
9秒前
9秒前
抽屉里的猫完成签到,获得积分10
11秒前
西西歪完成签到,获得积分20
11秒前
腾腾完成签到 ,获得积分10
12秒前
1111完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
酷炫的不悔完成签到,获得积分10
12秒前
余鹰完成签到,获得积分10
13秒前
13秒前
时尚俊驰完成签到 ,获得积分20
13秒前
平常安雁完成签到 ,获得积分10
13秒前
喜悦香萱发布了新的文献求助10
13秒前
刻苦的秋玲完成签到,获得积分10
13秒前
聪明的宛菡完成签到,获得积分10
14秒前
meng完成签到,获得积分10
14秒前
fqk完成签到,获得积分10
14秒前
jyjy完成签到,获得积分10
14秒前
孟子发布了新的文献求助10
17秒前
Air完成签到 ,获得积分10
17秒前
swy完成签到,获得积分10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661181
求助须知:如何正确求助?哪些是违规求助? 3222298
关于积分的说明 9744486
捐赠科研通 2931912
什么是DOI,文献DOI怎么找? 1605300
邀请新用户注册赠送积分活动 757805
科研通“疑难数据库(出版商)”最低求助积分说明 734569