A Simple and Optimal Policy Design with Safety Against Heavy-Tailed Risk for Stochastic Bandits

简单(哲学) 经济 计量经济学 计算机科学 数学优化 数理经济学 数学 认识论 哲学
作者
David Simchi‐Levi,Zeyu Zheng,Feng Zhu
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.03512
摘要

We study the stochastic multi-armed bandit problem and design new policies that enjoy both optimal regret expectation and light-tailed risk for regret distribution. We first find that any policy that obtains the optimal instance-dependent expected regret could incur a heavy-tailed regret tail risk that decays slowly with T. We then focus on policies that achieve optimal worst-case expected regret. We design a novel policy that (i) enjoys the worst-case optimality for regret expectation and (ii) has the worst-case tail probability of incurring a regret larger than any regret threshold that decays exponentially with respect to T. The decaying rate is proved to be optimal for all worst-case optimal policies. Our proposed policy achieves a delicate balance between doing more exploration at the beginning of the time horizon and doing more exploitation when approaching the end, compared with standard confidence-bound-based policies. We also enhance the policy design to accommodate the “any-time” setting where T is unknown a priori, highlighting “lifelong exploration”, and prove equivalently desired policy performances as compared with the “fixed-time” setting with known T. From a managerial perspective, we show through numerical experiments that our new policy design yields similar efficiency and better safety compared to celebrated policies. Our policy design is preferable especially when (i) there is a risk of underestimating the volatility profile, or (ii) there is a challenge of tuning policy hyper-parameters. We conclude by extending our proposed policy design to the stochastic linear bandit setting that leads to both worst-case optimality in terms of regret expectation and light-tailed risk on regret distribution. This paper was accepted by J. George Shanthikumar, data science. Funding: The work of D. Simchi-Levi and F. Zhu is partially supported by the MIT Data Science Laboratory. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.03512 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝蓝的腿毛完成签到 ,获得积分10
1秒前
张益达完成签到,获得积分10
1秒前
luoqin完成签到,获得积分10
1秒前
浪而而完成签到,获得积分10
2秒前
西松屋地铁完成签到 ,获得积分10
3秒前
00完成签到 ,获得积分10
5秒前
科研肥料完成签到,获得积分10
6秒前
6秒前
能动四眼仔完成签到 ,获得积分10
7秒前
ooa4321完成签到,获得积分10
7秒前
cxjie320完成签到,获得积分10
8秒前
大个应助duonicola采纳,获得30
8秒前
10秒前
c180发布了新的文献求助10
11秒前
xinxinwen发布了新的文献求助10
14秒前
15秒前
景行行止完成签到 ,获得积分10
17秒前
暴龙战士图图完成签到,获得积分10
20秒前
hanzhuziyan完成签到,获得积分10
22秒前
yuki完成签到 ,获得积分10
23秒前
mwm621完成签到,获得积分10
24秒前
陈瑞娟完成签到 ,获得积分10
24秒前
风色四叶草完成签到 ,获得积分10
24秒前
cesar完成签到,获得积分10
25秒前
殷勤的梦秋完成签到,获得积分10
25秒前
知了完成签到,获得积分10
26秒前
大个应助科研通管家采纳,获得10
26秒前
坚强亦丝应助科研通管家采纳,获得10
26秒前
在水一方应助科研通管家采纳,获得30
26秒前
大个应助科研通管家采纳,获得10
26秒前
bkagyin应助科研通管家采纳,获得10
26秒前
26秒前
充电宝应助科研通管家采纳,获得10
27秒前
Loooong应助科研通管家采纳,获得10
27秒前
shi hui应助科研通管家采纳,获得10
27秒前
27秒前
华仔应助科研通管家采纳,获得10
27秒前
二队淼队长完成签到,获得积分10
28秒前
c180完成签到,获得积分10
28秒前
马克图布完成签到,获得积分10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Introduction to Micromechanics and Nanomechanics 2nd Edition 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3535364
求助须知:如何正确求助?哪些是违规求助? 3113824
关于积分的说明 9313614
捐赠科研通 2811757
什么是DOI,文献DOI怎么找? 1544432
邀请新用户注册赠送积分活动 719439
科研通“疑难数据库(出版商)”最低求助积分说明 711431