清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A hybrid approach to improvement of watershed water quality modeling by coupling process–based and deep learning models

分水岭 水质 过程(计算) 质量(理念) 联轴节(管道) 计算机科学 环境科学 生化工程 工艺工程 环境工程 工程类 机器学习 生态学 生物 机械工程 哲学 认识论 操作系统
作者
Dae Seong Jeong,Heewon Jeong,Jin Hwi Kim,Joon Ha Kim,Yongeun Park
出处
期刊:Water Environment Research [Wiley]
卷期号:96 (8)
标识
DOI:10.1002/wer.11079
摘要

Watershed water quality modeling to predict changing water quality is an essential tool for devising effective management strategies within watersheds. Process-based models (PBMs) are typically used to simulate water quality modeling. In watershed modeling utilizing PBMs, it is crucial to effectively reflect the actual watershed conditions by appropriately setting the model parameters. However, parameter calibration and validation are time-consuming processes with inherent uncertainties. Addressing these challenges, this research aims to address various challenges encountered in the calibration and validation processes of PBMs. To achieve this, the development of a hybrid model, combining uncalibrated PBMs with data-driven models (DDMs) such as deep learning algorithms is proposed. This hybrid model is intended to enhance watershed modeling by integrating the strengths of both PBMs and DDMs. The hybrid model is constructed by coupling an uncalibrated Soil and Water Assessment Tool (SWAT) with a Long Short-Term Memory (LSTM). SWAT, a representative PBM, is constructed using geographical information and 5-year observed data from the Yeongsan River Watershed. The output variables of the uncalibrated SWAT, such as streamflow, suspended solids (SS), total nitrogen (TN), and total phosphorus (TP), as well as observed precipitation for the day and previous day, are used as training data for the deep learning model to predict the TP load. For the comparison, the conventional SWAT model is calibrated and validated to predict the TP load. The results revealed that TP load simulated by the hybrid model predicted the observed TP better than that predicted by the calibrated SWAT model. Also, the hybrid model reflects seasonal variations in the TP load, including peak events. Remarkably, when applied to other sub-basins without specific training, the hybrid model consistently outperformed the calibrated SWAT model. In conclusion, application of the SWAT-LSTM hybrid model could be a useful tool for decreasing uncertainties in model calibration and improving the overall predictive performance in watershed modeling. PRACTITIONER POINTS: We aimed to enhance process-based models for watershed water-quality modeling. The Soil and Water Assessment Tool-Long Short-Term Memory hybrid model's predicted and total phosphorus (TP) matched the observed TP. It exhibited superior predictive performance when applied to other sub-basins. The hybrid model will overcome the constraints of conventional modeling. It will also enable more effective and efficient modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
40秒前
飘逸锦程完成签到 ,获得积分10
49秒前
1分钟前
肆肆完成签到,获得积分10
1分钟前
lixuebin完成签到 ,获得积分10
1分钟前
危机的慕卉完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
爱静静举报明亮的书双求助涉嫌违规
2分钟前
3分钟前
3分钟前
gszy1975完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
5分钟前
6分钟前
zai完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
Kevin完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
7分钟前
8分钟前
8分钟前
郑洲完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
9分钟前
10分钟前
10分钟前
10分钟前
11分钟前
打打应助cloud采纳,获得20
11分钟前
11分钟前
11分钟前
cloud发布了新的文献求助20
11分钟前
龙江阿祖完成签到,获得积分10
11分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150609
求助须知:如何正确求助?哪些是违规求助? 2802008
关于积分的说明 7846069
捐赠科研通 2459372
什么是DOI,文献DOI怎么找? 1309219
科研通“疑难数据库(出版商)”最低求助积分说明 628708
版权声明 601757