已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A hybrid approach to improvement of watershed water quality modeling by coupling process–based and deep learning models

分水岭 水质 过程(计算) 质量(理念) 联轴节(管道) 计算机科学 环境科学 生化工程 工艺工程 环境工程 工程类 机器学习 生态学 生物 机械工程 操作系统 认识论 哲学
作者
Dae Seong Jeong,Heewon Jeong,Jin Hwi Kim,Joon Ha Kim,Yongeun Park
出处
期刊:Water Environment Research [Wiley]
卷期号:96 (8)
标识
DOI:10.1002/wer.11079
摘要

Watershed water quality modeling to predict changing water quality is an essential tool for devising effective management strategies within watersheds. Process-based models (PBMs) are typically used to simulate water quality modeling. In watershed modeling utilizing PBMs, it is crucial to effectively reflect the actual watershed conditions by appropriately setting the model parameters. However, parameter calibration and validation are time-consuming processes with inherent uncertainties. Addressing these challenges, this research aims to address various challenges encountered in the calibration and validation processes of PBMs. To achieve this, the development of a hybrid model, combining uncalibrated PBMs with data-driven models (DDMs) such as deep learning algorithms is proposed. This hybrid model is intended to enhance watershed modeling by integrating the strengths of both PBMs and DDMs. The hybrid model is constructed by coupling an uncalibrated Soil and Water Assessment Tool (SWAT) with a Long Short-Term Memory (LSTM). SWAT, a representative PBM, is constructed using geographical information and 5-year observed data from the Yeongsan River Watershed. The output variables of the uncalibrated SWAT, such as streamflow, suspended solids (SS), total nitrogen (TN), and total phosphorus (TP), as well as observed precipitation for the day and previous day, are used as training data for the deep learning model to predict the TP load. For the comparison, the conventional SWAT model is calibrated and validated to predict the TP load. The results revealed that TP load simulated by the hybrid model predicted the observed TP better than that predicted by the calibrated SWAT model. Also, the hybrid model reflects seasonal variations in the TP load, including peak events. Remarkably, when applied to other sub-basins without specific training, the hybrid model consistently outperformed the calibrated SWAT model. In conclusion, application of the SWAT-LSTM hybrid model could be a useful tool for decreasing uncertainties in model calibration and improving the overall predictive performance in watershed modeling. PRACTITIONER POINTS: We aimed to enhance process-based models for watershed water-quality modeling. The Soil and Water Assessment Tool-Long Short-Term Memory hybrid model's predicted and total phosphorus (TP) matched the observed TP. It exhibited superior predictive performance when applied to other sub-basins. The hybrid model will overcome the constraints of conventional modeling. It will also enable more effective and efficient modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lj完成签到 ,获得积分10
3秒前
ZXH发布了新的文献求助10
3秒前
7秒前
9秒前
10秒前
自然的茉莉完成签到,获得积分10
10秒前
CYL07完成签到 ,获得积分10
13秒前
Mankind发布了新的文献求助10
14秒前
scfsl发布了新的文献求助10
15秒前
18秒前
22秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
chen完成签到,获得积分10
25秒前
yz_qi完成签到 ,获得积分10
26秒前
29秒前
酷波er应助Mankind采纳,获得10
29秒前
zzholiver发布了新的文献求助10
31秒前
简让完成签到 ,获得积分10
31秒前
huangwensou发布了新的文献求助10
34秒前
36秒前
scfsl完成签到,获得积分10
37秒前
41秒前
liuerlong发布了新的文献求助10
41秒前
Titi完成签到 ,获得积分10
43秒前
Mark完成签到,获得积分10
43秒前
皛皛完成签到 ,获得积分10
45秒前
45秒前
a553355发布了新的文献求助10
46秒前
677发布了新的文献求助10
46秒前
sinan完成签到 ,获得积分10
46秒前
Mark发布了新的文献求助10
49秒前
52秒前
maybe完成签到,获得积分10
54秒前
58秒前
大个应助Captain采纳,获得10
58秒前
YanZhe发布了新的文献求助10
58秒前
完美世界应助677采纳,获得10
59秒前
1分钟前
酷波er应助与山采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959928
求助须知:如何正确求助?哪些是违规求助? 3506172
关于积分的说明 11128138
捐赠科研通 3238123
什么是DOI,文献DOI怎么找? 1789535
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024