Cross-Task Cognitive Load Classification with Identity Mapping-Based Distributed CNN and Attention-Based RNN Using Gabor Decomposed Data Images

计算机科学 模式识别(心理学) 人工智能 支持向量机 卷积神经网络 判别式
作者
Trupti Taori,Shankar S. Gupta,Sandesh Bhagat,Suhas Gajre,Ramchandra Manthalkar
出处
期刊:Iete Journal of Research [Informa]
卷期号:69 (12): 8753-8769 被引量:5
标识
DOI:10.1080/03772063.2022.2098191
摘要

The cognitive workload is a key to developing a logical and conscious thinking system. Maintaining an optimum workload improves the performance of an individual. The individuals' psycho-social factors are responsible for creating significant variability in the performance of a task, which poses a significant challenge in developing a consistent model for the classification of cross-task cognitive workload using physiological signal, Electroencephalogram (EEG). The primary focus of the proposed work is to develop a robust classification model CARNN, by employing the concatenated deep structure of distributed branches of convolutional neural networks with residual blocks through identity mappings, and recurrent neural network with an attention mechanism. EEG data is divided into milliseconds duration overlap segments. The segmented EEG data is converted into images using Gabor decomposition with two spatial frequency scales and four orientations and supplied as input to CARNN. The images are formed by interlacing the respective left and right electrode data to capture the data variations effectively. Efficient feature aggregation with learning of spatial and temporal domain discriminative features through Gabor decomposed data images improve the training of CARNN. CARNN achieves outstanding performance over traditional classifiers; support vector machine, k-nearest neighbor (KNN), ensemble subspace KNN and the pre-trained networks; AlexNet, ResNet18/50, VGG16/19, and Inception-v3. The proposed method results in 94.2%, 92.5%, 95.9%, 92.8%, 94.3% classification accuracy, specificity, sensitivity, precision, and F1-score, respectively. Two visual task levels apart in their complexity are used for cross-task classification of cognitive workload. The proposed method is validated on raw EEG data of 44 participants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TingtingGZ发布了新的文献求助10
刚刚
小曹医生完成签到,获得积分10
刚刚
hesu发布了新的文献求助10
刚刚
跳跃发布了新的文献求助10
刚刚
苦尽甘来完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
冷酷严青发布了新的文献求助10
1秒前
大大杰完成签到,获得积分10
1秒前
Cyuan发布了新的文献求助10
2秒前
AZ完成签到,获得积分20
2秒前
2秒前
3秒前
3秒前
4秒前
D10发布了新的文献求助10
5秒前
mera发布了新的文献求助10
6秒前
TYMX完成签到,获得积分10
6秒前
QIUQIU完成签到,获得积分10
7秒前
科研通AI6应助Quincy采纳,获得10
7秒前
9秒前
9秒前
leptin发布了新的文献求助10
9秒前
zmx123123完成签到,获得积分10
9秒前
瑞rui发布了新的文献求助10
10秒前
10秒前
12秒前
JayWu完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
顾矜应助年华似水2024采纳,获得10
14秒前
yangYR应助刻苦向梦采纳,获得10
15秒前
yang发布了新的文献求助10
16秒前
文润宇完成签到,获得积分10
17秒前
KKKZ发布了新的文献求助10
18秒前
18秒前
18秒前
散热发布了新的文献求助10
18秒前
19秒前
科研通AI6应助多情山蝶采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536670
求助须知:如何正确求助?哪些是违规求助? 4624270
关于积分的说明 14591267
捐赠科研通 4564769
什么是DOI,文献DOI怎么找? 2501907
邀请新用户注册赠送积分活动 1480641
关于科研通互助平台的介绍 1451943