Cross-Task Cognitive Load Classification with Identity Mapping-Based Distributed CNN and Attention-Based RNN Using Gabor Decomposed Data Images

计算机科学 模式识别(心理学) 人工智能 支持向量机 卷积神经网络 判别式
作者
Trupti Taori,Shankar S. Gupta,Sandesh Bhagat,Suhas Gajre,Ramchandra Manthalkar
出处
期刊:Iete Journal of Research [Informa]
卷期号:69 (12): 8753-8769 被引量:5
标识
DOI:10.1080/03772063.2022.2098191
摘要

The cognitive workload is a key to developing a logical and conscious thinking system. Maintaining an optimum workload improves the performance of an individual. The individuals' psycho-social factors are responsible for creating significant variability in the performance of a task, which poses a significant challenge in developing a consistent model for the classification of cross-task cognitive workload using physiological signal, Electroencephalogram (EEG). The primary focus of the proposed work is to develop a robust classification model CARNN, by employing the concatenated deep structure of distributed branches of convolutional neural networks with residual blocks through identity mappings, and recurrent neural network with an attention mechanism. EEG data is divided into milliseconds duration overlap segments. The segmented EEG data is converted into images using Gabor decomposition with two spatial frequency scales and four orientations and supplied as input to CARNN. The images are formed by interlacing the respective left and right electrode data to capture the data variations effectively. Efficient feature aggregation with learning of spatial and temporal domain discriminative features through Gabor decomposed data images improve the training of CARNN. CARNN achieves outstanding performance over traditional classifiers; support vector machine, k-nearest neighbor (KNN), ensemble subspace KNN and the pre-trained networks; AlexNet, ResNet18/50, VGG16/19, and Inception-v3. The proposed method results in 94.2%, 92.5%, 95.9%, 92.8%, 94.3% classification accuracy, specificity, sensitivity, precision, and F1-score, respectively. Two visual task levels apart in their complexity are used for cross-task classification of cognitive workload. The proposed method is validated on raw EEG data of 44 participants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cheng4046完成签到,获得积分10
刚刚
刚刚
巴巴塔完成签到,获得积分10
刚刚
pluto应助香蕉猴子啦啦啦采纳,获得10
刚刚
刚刚
刚刚
刚刚
刚刚
山丘完成签到,获得积分10
1秒前
purplelove完成签到 ,获得积分10
1秒前
hu发布了新的文献求助10
1秒前
正己化人应助风起人散采纳,获得10
1秒前
你最耀眼关注了科研通微信公众号
1秒前
黄晓完成签到,获得积分10
1秒前
1秒前
1秒前
皛燚发布了新的文献求助10
1秒前
布谷完成签到,获得积分10
2秒前
zhao完成签到,获得积分10
2秒前
小九九完成签到,获得积分10
2秒前
大方的白开水完成签到,获得积分10
3秒前
kingwill完成签到,获得积分0
3秒前
ghost发布了新的文献求助10
3秒前
23333完成签到,获得积分10
3秒前
小胡完成签到,获得积分10
3秒前
聪慧的松鼠完成签到,获得积分10
3秒前
Wayne_Sun完成签到,获得积分10
3秒前
OYYO完成签到,获得积分10
3秒前
科研通AI6应助melisa采纳,获得10
4秒前
愤怒的雅青完成签到 ,获得积分10
4秒前
焦糖咸鱼发布了新的文献求助10
4秒前
奕青完成签到,获得积分10
4秒前
简单的冬瓜完成签到,获得积分10
4秒前
lwydxb12138完成签到,获得积分10
5秒前
执着烧鹅完成签到,获得积分10
5秒前
钰宁完成签到,获得积分10
5秒前
聪明伊完成签到,获得积分10
5秒前
FashionBoy应助可爱花瓣采纳,获得10
5秒前
pp发布了新的文献求助30
5秒前
5秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5387753
求助须知:如何正确求助?哪些是违规求助? 4509705
关于积分的说明 14032376
捐赠科研通 4420535
什么是DOI,文献DOI怎么找? 2428303
邀请新用户注册赠送积分活动 1420936
关于科研通互助平台的介绍 1400119