已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cross-Task Cognitive Load Classification with Identity Mapping-Based Distributed CNN and Attention-Based RNN Using Gabor Decomposed Data Images

计算机科学 模式识别(心理学) 人工智能 支持向量机 卷积神经网络 判别式
作者
Trupti Taori,Shankar S. Gupta,Sandesh Bhagat,Suhas Gajre,Ramchandra Manthalkar
出处
期刊:Iete Journal of Research [Taylor & Francis]
卷期号:69 (12): 8753-8769 被引量:5
标识
DOI:10.1080/03772063.2022.2098191
摘要

The cognitive workload is a key to developing a logical and conscious thinking system. Maintaining an optimum workload improves the performance of an individual. The individuals' psycho-social factors are responsible for creating significant variability in the performance of a task, which poses a significant challenge in developing a consistent model for the classification of cross-task cognitive workload using physiological signal, Electroencephalogram (EEG). The primary focus of the proposed work is to develop a robust classification model CARNN, by employing the concatenated deep structure of distributed branches of convolutional neural networks with residual blocks through identity mappings, and recurrent neural network with an attention mechanism. EEG data is divided into milliseconds duration overlap segments. The segmented EEG data is converted into images using Gabor decomposition with two spatial frequency scales and four orientations and supplied as input to CARNN. The images are formed by interlacing the respective left and right electrode data to capture the data variations effectively. Efficient feature aggregation with learning of spatial and temporal domain discriminative features through Gabor decomposed data images improve the training of CARNN. CARNN achieves outstanding performance over traditional classifiers; support vector machine, k-nearest neighbor (KNN), ensemble subspace KNN and the pre-trained networks; AlexNet, ResNet18/50, VGG16/19, and Inception-v3. The proposed method results in 94.2%, 92.5%, 95.9%, 92.8%, 94.3% classification accuracy, specificity, sensitivity, precision, and F1-score, respectively. Two visual task levels apart in their complexity are used for cross-task classification of cognitive workload. The proposed method is validated on raw EEG data of 44 participants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
俊逸的飞荷完成签到,获得积分10
3秒前
积极闭月完成签到,获得积分10
4秒前
嘟嘟拿铁发布了新的文献求助10
7秒前
月报月报发布了新的文献求助10
8秒前
想吃芝士焗饭完成签到 ,获得积分10
9秒前
zydaphne完成签到 ,获得积分20
9秒前
11秒前
12秒前
活的在意发布了新的文献求助10
16秒前
jocelyn发布了新的文献求助10
16秒前
斯文败类应助嘟嘟拿铁采纳,获得10
17秒前
21秒前
XXGG完成签到 ,获得积分10
21秒前
活的在意完成签到,获得积分10
22秒前
残幻应助冬鹿采纳,获得10
25秒前
小秋发布了新的文献求助10
27秒前
嘟嘟拿铁完成签到,获得积分20
31秒前
changyongcheng完成签到 ,获得积分10
34秒前
保持好心情完成签到 ,获得积分10
34秒前
小航完成签到 ,获得积分10
36秒前
书中魂我自不理会完成签到 ,获得积分10
37秒前
小二郎应助FAN采纳,获得10
38秒前
39秒前
吾中发布了新的文献求助10
41秒前
半剖天空发布了新的文献求助30
43秒前
44秒前
haixia发布了新的文献求助10
50秒前
所所应助科研通管家采纳,获得10
54秒前
54秒前
小蘑菇应助科研通管家采纳,获得10
54秒前
慕青应助科研通管家采纳,获得10
54秒前
科研通AI5应助科研通管家采纳,获得10
54秒前
偏夜逢雨应助科研通管家采纳,获得10
54秒前
55秒前
李健的小迷弟应助haixia采纳,获得10
56秒前
深情安青应助placebo采纳,获得10
1分钟前
云霞完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770344
求助须知:如何正确求助?哪些是违规求助? 3315417
关于积分的说明 10176088
捐赠科研通 3030394
什么是DOI,文献DOI怎么找? 1662898
邀请新用户注册赠送积分活动 795217
科研通“疑难数据库(出版商)”最低求助积分说明 756612