清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A tree-structure-guided graph convolutional network with contrastive learning for the assessment of parkinsonian hand movements

计算机科学 人工智能 判别式 图形 特征学习 树遍历 机器学习 模式识别(心理学) 理论计算机科学 程序设计语言
作者
Rui Guo,Hao Li,Chencheng Zhang,Xiaohua Qian
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:81: 102560-102560 被引量:13
标识
DOI:10.1016/j.media.2022.102560
摘要

Bradykinesia is one of the core motor symptoms of Parkinson's disease (PD). Neurologists typically perform face-to-face bradykinesia assessment in PD patients according to the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS). As this human-expert assessment lacks objectivity and consistency, an automated and objective assessment scheme for bradykinesia is critically needed. In this paper, we propose a tree-structure-guided graph convolutional network with contrastive learning scheme to solve the challenge of difficulty in fine-grained feature extraction and insufficient model stability, finally achieving the video-based automated assessment of Parkinsonian hand movements, which represent a vital MDS-UPDRS component for examining upper-limb bradykinesia. Specifically, a tri-directional skeleton tree scheme is proposed to achieve effective fine-grained modeling of spatial hand dependencies. In this scheme, hand skeletons are extracted from videos, and then the spatial structures of these skeletons are constructed through depth-first tree traversal. Afterwards, a tree max-pooling module is employed to establish remote exchange between outer and inner nodes, hierarchically gather the most salient motion features, and hence achieve fine-grained mining. Finally, a group-sparsity-induced momentum contrast is also developed to learn similar motion patterns under different interference through contrastive learning. This can promote stable learning of discriminative spatial-temporal features with invariant motion semantics. Comprehensive experiments on a large clinical video dataset reveal that our method achieves competitive results, and outperforms other sensor-based and RGB-depth methods. The proposed method leads to accurate assessment of PD bradykinesia through videos collected by low-cost consumer cameras of limited capabilities. Hence, our work provides a convenient tool for PD telemedicine applications with modest hardware requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浚稚完成签到 ,获得积分10
5秒前
Antonio完成签到 ,获得积分10
37秒前
SJD完成签到,获得积分0
44秒前
z1y1p1完成签到,获得积分10
53秒前
归尘应助Benhnhk21采纳,获得30
1分钟前
直率的笑翠完成签到 ,获得积分10
1分钟前
1分钟前
未完成完成签到,获得积分10
1分钟前
阿童木完成签到,获得积分10
1分钟前
微卫星不稳定完成签到 ,获得积分10
1分钟前
emxzemxz完成签到 ,获得积分10
1分钟前
科研狗完成签到 ,获得积分10
1分钟前
十一完成签到 ,获得积分10
1分钟前
2分钟前
vbnn完成签到 ,获得积分10
2分钟前
红茸茸羊完成签到 ,获得积分10
2分钟前
2分钟前
mf2002mf完成签到 ,获得积分10
2分钟前
iberis完成签到 ,获得积分10
2分钟前
藜藜藜在乎你完成签到 ,获得积分10
2分钟前
pjxxx完成签到 ,获得积分10
2分钟前
2分钟前
X519664508完成签到,获得积分0
3分钟前
3分钟前
Arthur发布了新的文献求助10
3分钟前
3分钟前
Arthur完成签到,获得积分10
3分钟前
GGBond完成签到 ,获得积分10
3分钟前
酷波er应助三井库里采纳,获得10
3分钟前
4分钟前
三井库里发布了新的文献求助10
4分钟前
4分钟前
4分钟前
iNk应助几米的漫画99采纳,获得10
4分钟前
lyj完成签到 ,获得积分10
4分钟前
紫清发布了新的文献求助10
4分钟前
紫清完成签到,获得积分10
4分钟前
4分钟前
勤奋凡之完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466837
求助须知:如何正确求助?哪些是违规求助? 3059674
关于积分的说明 9067359
捐赠科研通 2750142
什么是DOI,文献DOI怎么找? 1509066
科研通“疑难数据库(出版商)”最低求助积分说明 697126
邀请新用户注册赠送积分活动 696913